110 research outputs found

    Monoclonal antibodies and Fc-fusion protein biologic medicines: A multinational cross-sectional investigation of accessibility and affordability in Asia Pacific regions between 2010 and 2020

    Get PDF
    Background: Monoclonal antibody (mAb) and Fc-fusion protein (FcP) are highly effective therapeutic biologics. We aimed to analyse consumption and expenditure trends in 14 Asia-Pacific countries/regions (APAC) and three benchmark countries (the UK, Canada, and the US). Methods: We analysed 440 mAb and FcP biological products using the IQVIA-MIDAS global sales database. For each year between 2010 and 2020 inclusive, we used standard units (SU) sold per 1000 population and manufacture level price (standardised in 2019 US dollars) to evaluate consumption (accessibility) and expenditure (affordability). Changes of consumption and expenditure were estimated using compound annual growth rate (CAGR). Correlations between consumption, country's economic and health performance indicators were measured using Spearman correlation coefficient. Findings: Between 2010 and 2020, CAGRs of consumption in each region ranged from 7% to 34% and the CAGRs of expenditure ranged from 9% to 31%. The median consumption of biologics was extremely low in lower-middle-income economies (0·29 SU/1000 population) compared with upper-middle-income economies (1·20), high-income economies (40·94) and benchmark countries (109·55), although the median CAGRs of biologics consumption in lower-middle-income economies (31%) was greater than upper-middle-income (14%), high-income economies (13%) and benchmark countries (9%). Consumption was correlated with GDP per capita [Spearman's rank correlation coefficient (r) = 0·75, p < 0·001], health expenditure as a percentage of total (r = 0·83, p < 0·001) and medical doctors’ density (r = 0·85, p < 0·001). Interpretation: There have been significant increases in mAb and FcP biologics consumption and expenditure, however accessibility of biological medicines remains unequal and is largely correlated with country's income level. Funding: This research was funded by NHMRC Project Grant GNT1157506 and GNT1196900; Enhanced Start-up Fund for new academic staff and Internal Research Fund, Department of Medicine, LKS Faculty of Medicine, University of Hong Kong

    Spike firing and IPSPs in layer V pyramidal neurons during beta oscillations in rat primary motor cortex (M1) in vitro

    Get PDF
    Beta frequency oscillations (10-35 Hz) in motor regions of cerebral cortex play an important role in stabilising and suppressing unwanted movements, and become intensified during the pathological akinesia of Parkinson's Disease. We have used a cortical slice preparation of rat brain, combined with concurrent intracellular and field recordings from the primary motor cortex (M1), to explore the cellular basis of the persistent beta frequency (27-30 Hz) oscillations manifest in local field potentials (LFP) in layers II and V of M1 produced by continuous perfusion of kainic acid (100 nM) and carbachol (5 µM). Spontaneous depolarizing GABA-ergic IPSPs in layer V cells, intracellularly dialyzed with KCl and IEM1460 (to block glutamatergic EPSCs), were recorded at -80 mV. IPSPs showed a highly significant (P< 0.01) beta frequency component, which was highly significantly coherent with both the Layer II and V LFP oscillation (which were in antiphase to each other). Both IPSPs and the LFP beta oscillations were abolished by the GABAA antagonist bicuculline. Layer V cells at rest fired spontaneous action potentials at sub-beta frequencies (mean of 7.1+1.2 Hz; n = 27) which were phase-locked to the layer V LFP beta oscillation, preceding the peak of the LFP beta oscillation by some 20 ms. We propose that M1 beta oscillations, in common with other oscillations in other brain regions, can arise from synchronous hyperpolarization of pyramidal cells driven by synaptic inputs from a GABA-ergic interneuronal network (or networks) entrained by recurrent excitation derived from pyramidal cells. This mechanism plays an important role in both the physiology and pathophysiology of control of voluntary movement generation

    Excursions into the Evolution of Early-Type Galaxies in Clusters

    Full text link
    Recent observations have revealed that early-type galaxies (ETG) in clusters comprise an old galaxy population that is evolving passively. We review some recent observations from the ground and from HST that show that ETG have undergone a significant amount of luminosity evolution. This evolution is traced by two projections of the fundamental plane (FP): the size-magnitude relation (SMR) and the color-magnitude relation (CMR). We will briefly discuss the relevance of all these results in the context of the universality of the IMF.Comment: 10 pages, 2 figures, to appear in the proccedings of "New Quests in Stellar Astrophysics: The Link Between Stars and Cosmology, Chavez et al. ed

    Impulsiveness, postprandial blood glucose and glucoregulation affect measures of behavioral flexibility

    Get PDF
    Behavioral flexibility (BF) performance is influenced by both psychological and physiological factors. Recent evidence suggests that impulsivity and blood glucose can affect executive function, of which BF is a subdomain. Here, we hypothesized that impulsivity, fasting blood glucose (FBG), glucose changes (i.e. glucoregulation) from postprandial blood glucose (PBG) following the intake of a 15g glucose beverage could account for variability in BF performance. The Stroop Color-Word Test and the Wisconsin Card Sorting Test (WCST) were used as measures of BF, and the Barratt Impulsiveness Scale (BIS-11) to quantify participants’ impulsivity. In Study 1, neither impulsivity nor FBG could predict performance on the Stroop or the WCST. In Study 2, we tested whether blood glucose levels following the intake of a sugary drink, and absolute changes in glucose levels following the intake of the glucose beverage could better predict BF. Results showed that impulsivity and the difference in blood glucose between time 1 (postprandial) and time 2, but not blood glucose levels at time 2 per se could account for variation in performance on the WCST but not on the Stroop task. More specifically, lower impulsivity scores on the BIS-11, and smaller differences in blood glucose levels from time 1 to time 2 predicted a decrease in the number of total and perseverative errors on the WCST. Our results show that measures of impulsivity and glucoregulation can be used to predict BF. Importantly our data extend the work on glucose and cognition to a clinically relevant domain of cognition

    Plasma sphingosine-1-phosphate is elevated in obesity

    Get PDF
    Background: Dysfunctional lipid metabolism is a hallmark of obesity and insulin resistance and a risk factor for various cardiovascular and metabolic complications. In addition to the well known increase in plasma triglycerides and free fatty acids, recent work in humans and rodents has shown that obesity is associated with elevations in the bioactive class of sphingolipids known as ceramides. However, in obesity little is known about the plasma concentrations of sphinogsine-1-phosphate (S1P), the breakdown product of ceramide, which is an important signaling molecule in mammalian biology. Therefore, the purpose of this study was to examine the impact of obesity on circulating S1P concentration and its relationship with markers of glucose metabolism and insulin sensitivity. Methodology/Principal Findings: Plasma S1P levels were determined in high-fat diet (HFD)-induced and genetically obese (ob/ob) mice along with obese humans. Circulating S1P was elevated in both obese mouse models and in obese humans compared with lean healthy controls. Furthermore, in humans, plasma S1P positively correlated with total body fat percentage, body mass index (BMI), waist circumference, fasting insulin, HOMA-IR, HbA1c (%), total and LDL cholesterol. In addition, fasting increased plasma S1P levels in lean healthy mice. Conclusion: We show that elevations in plasma S1P are a feature of both human and rodent obesity and correlate with metabolic abnormalities such as adiposity and insulin resistance

    Characterizing Genetic Risk at Known Prostate Cancer Susceptibility Loci in African Americans

    Get PDF
    GWAS of prostate cancer have been remarkably successful in revealing common genetic variants and novel biological pathways that are linked with its etiology. A more complete understanding of inherited susceptibility to prostate cancer in the general population will come from continuing such discovery efforts and from testing known risk alleles in diverse racial and ethnic groups. In this large study of prostate cancer in African American men (3,425 prostate cancer cases and 3,290 controls), we tested 49 risk variants located in 28 genomic regions identified through GWAS in men of European and Asian descent, and we replicated associations (at p≤0.05) with roughly half of these markers. Through fine-mapping, we identified nearby markers in many regions that better define associations in African Americans. At 8q24, we found 9 variants (p≤6×10−4) that best capture risk of prostate cancer in African Americans, many of which are more common in men of African than European descent. The markers found to be associated with risk at each locus improved risk modeling in African Americans (per allele OR = 1.17) over the alleles reported in the original GWAS (OR = 1.08). In summary, in this detailed analysis of the prostate cancer risk loci reported from GWAS, we have validated and improved upon markers of risk in some regions that better define the association with prostate cancer in African Americans. Our findings with variants at 8q24 also reinforce the importance of this region as a major risk locus for prostate cancer in men of African ancestry

    Active Zone Protein Bassoon Co-Localizes with Presynaptic Calcium Channel, Modifies Channel Function, and Recovers from Aging Related Loss by Exercise

    Get PDF
    The P/Q-type voltage-dependent calcium channels (VDCCs) are essential for synaptic transmission at adult mammalian neuromuscular junctions (NMJs); however, the subsynaptic location of VDCCs relative to active zones in rodent NMJs, and the functional modification of VDCCs by the interaction with active zone protein Bassoon remain unknown. Here, we show that P/Q-type VDCCs distribute in a punctate pattern within the NMJ presynaptic terminals and align in three dimensions with Bassoon. This distribution pattern of P/Q-type VDCCs and Bassoon in NMJs is consistent with our previous study demonstrating the binding of VDCCs and Bassoon. In addition, we now show that the interaction between P/Q-type VDCCs and Bassoon significantly suppressed the inactivation property of P/Q-type VDCCs, suggesting that the Ca2+ influx may be augmented by Bassoon for efficient synaptic transmission at NMJs. However, presynaptic Bassoon level was significantly attenuated in aged rat NMJs, which suggests an attenuation of VDCC function due to a lack of this interaction between VDCC and Bassoon. Importantly, the decreased Bassoon level in aged NMJs was ameliorated by isometric strength training of muscles for two months. The training increased Bassoon immunoreactivity in NMJs without affecting synapse size. These results demonstrated that the P/Q-type VDCCs preferentially accumulate at NMJ active zones and play essential role in synaptic transmission in conjunction with the active zone protein Bassoon. This molecular mechanism becomes impaired by aging, which suggests altered synaptic function in aged NMJs. However, Bassoon level in aged NMJs can be improved by muscle exercise

    Plasma and neutrophil fatty acid composition in advanced cancer patients and response to fish oil supplementation

    Get PDF
    Metabolic demand and altered supply of essential nutrients is poorly characterised in patients with advanced cancer. A possible imbalance or deficiency of essential fatty acids is suggested by reported beneficial effects of fish oil supplementation. To assess fatty acid status (composition of plasma and neutrophil phospholipids) in advanced cancer patients before and after 14 days of supplementation (12±1 g day−1) with fish (eicosapentaenoic acid, and docosahexaenoic acid) or placebo (olive) oil. Blood was drawn from cancer patients experiencing weight loss of >5% body weight (n=23). Fatty acid composition of plasma phospholipids and the major phospholipid classes of isolated neutrophils were determined using gas liquid chromatography. At baseline, patients with advanced cancer exhibited low levels (<30% of normal values) of plasma phospholipids and constituent fatty acids and elevated 20 : 4 n-6 content in neutrophil phospholipids. High n-6/n-3 fatty acid ratios in neutrophil and plasma phospholipids were inversely related to body mass index. Fish oil supplementation raised eicosapentaenoic acid and docosahexaenoic acid content in plasma but not neutrophil phospholipids. 20 : 4 n-6 content was reduced in neutrophil PI following supplementation with fish oil. Change in body weight during the supplementation period related directly to increases in eicosapentaenoic acid in plasma. Advanced cancer patients have alterations in lipid metabolism potentially due to nutritional status and/or chemotherapy. Potential obstacles in fatty acid utilisation must be addressed in future trials aiming to improve outcomes using nutritional intervention with fish oils
    corecore