228 research outputs found

    Application of whole genome and RNA sequencing to investigate the genomic landscape of common variable immunodeficiency disorders.

    Get PDF
    Common Variable Immunodeficiency Disorders (CVIDs) are the most prevalent cause of primary antibody failure. CVIDs are highly variable and a genetic causes have been identified in <5% of patients. Here, we performed whole genome sequencing (WGS) of 34 CVID patients (94% sporadic) and combined them with transcriptomic profiling (RNA-sequencing of B cells) from three patients and three healthy controls. We identified variants in CVID disease genes TNFRSF13B, TNFRSF13C, LRBA and NLRP12 and enrichment of variants in known and novel disease pathways. The pathways identified include B-cell receptor signalling, non-homologous end-joining, regulation of apoptosis, T cell regulation and ICOS signalling. Our data confirm the polygenic nature of CVID and suggest individual-specific aetiologies in many cases. Together our data show that WGS in combination with RNA-sequencing allows for a better understanding of CVIDs and the identification of novel disease associated pathways

    Shared and Distinct Aspects of the Sepsis Transcriptomic Response to Fecal Peritonitis and Pneumonia.

    Get PDF
    Non-commercial use onlyRATIONALE: Heterogeneity in the septic response has hindered efforts to understand pathophysiology and develop targeted therapies. Source of infection, with different causative organisms and temporal changes, might influence this heterogeneity. OBJECTIVES: To investigate individual and temporal variations in the transcriptomic response to sepsis due to fecal peritonitis, and to compare these with the same parameters in community-acquired pneumonia. METHODS: We performed genome-wide gene expression profiling in peripheral blood leukocytes of adult patients admitted to intensive care with sepsis due to fecal peritonitis (n = 117) or community-acquired pneumonia (n = 126), and of control subjects without sepsis (n = 10). MEASUREMENTS AND MAIN RESULTS: A substantial portion of the transcribed genome (18%) was differentially expressed compared with that of control subjects, independent of source of infection, with eukaryotic initiation factor 2 signaling being the most enriched canonical pathway. We identified two sepsis response signature (SRS) subgroups in fecal peritonitis associated with early mortality (P = 0.01; hazard ratio, 4.78). We defined gene sets predictive of SRS group, and serial sampling demonstrated that subgroup membership is dynamic during intensive care unit admission. We found that SRS is the major predictor of transcriptomic variation; a small number of genes (n = 263) were differentially regulated according to the source of infection, enriched for IFN signaling and antigen presentation. We define temporal changes in gene expression from disease onset involving phagosome formation as well as natural killer cell and IL-3 signaling. CONCLUSIONS: The majority of the sepsis transcriptomic response is independent of the source of infection and includes signatures reflecting immune response state and prognosis. A modest number of genes show evidence of specificity. Our findings highlight opportunities for patient stratification and precision medicine in sepsis.Supported by the National Institute for Health Research (NIHR) through the Comprehensive Clinical Research Network for patient recruitment, the Wellcome Trust (grants 074318 [J.C.K.] and 090532/Z/09/Z [core facilities Wellcome Trust Centre for Human Genetics including High-Throughput Genomics Group]), the European Research Council (ERC) under the European Union’s Seventh Framework Program (FP7/2007–2013)/ERC grant agreement 281824 (J.C.K.), the Medical Research Council (98082 [J.C.K.]), the UK Intensive Care Society, and the NIHR Oxford Biomedical Research Centre. A.V.S.H. is supported by a Wellcome Trust Senior Investigator Award (HCUZZ0), and A.C.G. is supported by an NIHR Clinician Scientist Fellowship

    Development of B Cells and Erythrocytes Is Specifically Impaired by the Drug Celastrol in Mice

    Get PDF
    Background: Celastrol, an active compound extracted from the root of the Chinese medicine ‘‘Thunder of God Vine’’ (Tripterygium wilfordii), exhibits anticancer, antioxidant and anti-inflammatory activities, and interest in the therapeutic potential of celastrol is increasing. However, described side effects following treatment are significant and require investigation prior to initiating clinical trials. Here, we investigated the effects of celastrol on the adult murine hematopoietic system. Methodology/Principal Findings: Animals were treated daily with celastrol over a four-day period and peripheral blood, bone marrow, spleen, and peritoneal cavity were harvested for cell phenotyping. Treated mice showed specific impairment of the development of B cells and erythrocytes in all tested organs. In bone marrow, these alterations were accompanied by decreases in populations of common lymphoid progenitors (CLP), common myeloid progenitors (CMP) and megakaryocyte-erythrocyte progenitors (MEP). Conclusions/Significance: These results indicate that celastrol acts through regulators of adult hematopoiesis and could be used as a modulator of the hematopoietic system. These observations provide valuable information for further assessmen

    Genome-wide association study of survival from sepsis due to pneumonia: an observational cohort study

    Get PDF
    BACKGROUND: Sepsis continues to be a major cause of death, disability, and health-care expenditure worldwide. Despite evidence suggesting that host genetics can influence sepsis outcomes, no specific loci have yet been convincingly replicated. The aim of this study was to identify genetic variants that influence sepsis survival. METHODS: We did a genome-wide association study in three independent cohorts of white adult patients admitted to intensive care units with sepsis, severe sepsis, or septic shock (as defined by the International Consensus Criteria) due to pneumonia or intra-abdominal infection (cohorts 1-3, n=2534 patients). The primary outcome was 28 day survival. Results for the cohort of patients with sepsis due to pneumonia were combined in a meta-analysis of 1553 patients from all three cohorts, of whom 359 died within 28 days of admission to the intensive-care unit. The most significantly associated single nucleotide polymorphisms (SNPs) were genotyped in a further 538 white patients with sepsis due to pneumonia (cohort 4), of whom 106 died. FINDINGS: In the genome-wide meta-analysis of three independent pneumonia cohorts (cohorts 1-3), common variants in the FER gene were strongly associated with survival (p=9·7 × 10(-8)). Further genotyping of the top associated SNP (rs4957796) in the additional cohort (cohort 4) resulted in a combined p value of 5·6 × 10(-8) (odds ratio 0·56, 95% CI 0·45-0·69). In a time-to-event analysis, each allele reduced the mortality over 28 days by 44% (hazard ratio for death 0·56, 95% CI 0·45-0·69; likelihood ratio test p=3·4 × 10(-9), after adjustment for age and stratification by cohort). Mortality was 9·5% in patients carrying the CC genotype, 15·2% in those carrying the TC genotype, and 25·3% in those carrying the TT genotype. No significant genetic associations were identified when patients with sepsis due to pneumonia and intra-abdominal infection were combined. INTERPRETATION: We have identified common variants in the FER gene that associate with a reduced risk of death from sepsis due to pneumonia. The FER gene and associated molecular pathways are potential novel targets for therapy or prevention and candidates for the development of biomarkers for risk stratification. FUNDING: European Commission and the Wellcome Trust

    An atlas of genetic scores to predict multi-omic traits

    Get PDF
    The use of omic modalities to dissect the molecular underpinnings of common diseases and traits is becoming increasingly common. But multi-omic traits can be genetically predicted, which enables highly cost-effective and powerful analyses for studies that do not have multi-omics1. Here we examine a large cohort (the INTERVAL study2; n = 50,000 participants) with extensive multi-omic data for plasma proteomics (SomaScan, n = 3,175; Olink, n = 4,822), plasma metabolomics (Metabolon HD4, n = 8,153), serum metabolomics (Nightingale, n = 37,359) and whole-blood Illumina RNA sequencing (n = 4,136), and use machine learning to train genetic scores for 17,227 molecular traits, including 10,521 that reach Bonferroni-adjusted significance. We evaluate the performance of genetic scores through external validation across cohorts of individuals of European, Asian and African American ancestries. In addition, we show the utility of these multi-omic genetic scores by quantifying the genetic control of biological pathways and by generating a synthetic multi-omic dataset of the UK Biobank3 to identify disease associations using a phenome-wide scan. We highlight a series of biological insights with regard to genetic mechanisms in metabolism and canonical pathway associations with disease; for example, JAK-STAT signalling and coronary atherosclerosis. Finally, we develop a portal ( https://www.omicspred.org/ ) to facilitate public access to all genetic scores and validation results, as well as to serve as a platform for future extensions and enhancements of multi-omic genetic scores

    Adult Subependymal Neural Precursors, but Not Differentiated Cells, Undergo Rapid Cathodal Migration in the Presence of Direct Current Electric Fields

    Get PDF
    BACKGROUND: The existence of neural stem and progenitor cells (together termed neural precursor cells) in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory agents following injury augments this activation and has been shown to result in behavioural functional recovery following stroke. METHODS AND FINDINGS: With the goal of enhancing neural precursor migration to facilitate the repair process we report that externally applied direct current electric fields induce rapid and directed cathodal migration of pure populations of undifferentiated adult subependyma-derived neural precursors. Using time-lapse imaging microscopy in vitro we performed an extensive single-cell kinematic analysis demonstrating that this galvanotactic phenomenon is a feature of undifferentiated precursors, and not differentiated phenotypes. Moreover, we have shown that the migratory response of the neural precursors is a direct effect of the electric field and not due to chemotactic gradients. We also identified that epidermal growth factor receptor (EGFR) signaling plays a role in the galvanotactic response as blocking EGFR significantly attenuates the migratory behaviour. CONCLUSIONS: These findings suggest direct current electric fields may be implemented in endogenous repair paradigms to promote migration and tissue repair following neurotrauma

    Sandy coastlines under threat of erosion

    Get PDF
    Sandy beaches occupy more than one-third of the global coastline(1) and have high socioeconomic value related to recreation, tourism and ecosystem services(2). Beaches are the interface between land and ocean, providing coastal protection from marine storms and cyclones(3). However the presence of sandy beaches cannot be taken for granted, as they are under constant change, driven by meteorological(4,5), geological(6) and anthropogenic factors(1,7). A substantial proportion of the world's sandy coastline is already eroding(1,7), a situation that could be exacerbated by climate change(8,9). Here, we show that ambient trends in shoreline dynamics, combined with coastal recession driven by sea level rise, could result in the near extinction of almost half of the world's sandy beaches by the end of the century. Moderate GHG emission mitigation could prevent 40% of shoreline retreat. Projected shoreline dynamics are dominated by sea level rise for the majority of sandy beaches, but in certain regions the erosive trend is counteracted by accretive ambient shoreline changes; for example, in the Amazon, East and Southeast Asia and the north tropical Pacific. A substantial proportion of the threatened sandy shorelines are in densely populated areas, underlining the need for the design and implementation of effective adaptive measures. Erosion is a major problem facing sandy beaches that will probably worsen with climate change and sea-level rise. Half the world's beaches, many of which are in densely populated areas, could disappear by the end of the century under current trends; mitigation could lessen retreat by 40%.info:eu-repo/semantics/publishedVersio
    corecore