3,454 research outputs found
Restrictions and extensions of semibounded operators
We study restriction and extension theory for semibounded Hermitian operators
in the Hardy space of analytic functions on the disk D. Starting with the
operator zd/dz, we show that, for every choice of a closed subset F in T=bd(D)
of measure zero, there is a densely defined Hermitian restriction of zd/dz
corresponding to boundary functions vanishing on F. For every such restriction
operator, we classify all its selfadjoint extension, and for each we present a
complete spectral picture.
We prove that different sets F with the same cardinality can lead to quite
different boundary-value problems, inequivalent selfadjoint extension
operators, and quite different spectral configurations. As a tool in our
analysis, we prove that the von Neumann deficiency spaces, for a fixed set F,
have a natural presentation as reproducing kernel Hilbert spaces, with a
Hurwitz zeta-function, restricted to FxF, as reproducing kernel.Comment: 63 pages, 11 figure
THE SPIRAL WAVE INSTABILITY INDUCED BY A GIANT PLANET. I. PARTICLE STIRRING IN THE INNER REGIONS OF PROTOPLANETARY DISKS
We have recently shown that spiral density waves propagating in accretion
disks can undergo a parametric instability by resonantly coupling with and
transferring energy into pairs of inertial waves (or inertial-gravity waves
when buoyancy is important). In this paper, we perform inviscid
three-dimensional global hydrodynamic simulations to examine the growth and
consequence of this instability operating on the spiral waves driven by a
Jupiter-mass planet in a protoplanetary disk. We find that the spiral waves are
destabilized via the spiral wave instability (SWI), generating hydrodynamic
turbulence and sustained radially-alternating vertical flows that appear to be
associated with long wavelength inertial modes. In the interval , where denotes the semi-major axis of the planetary orbit
(assumed to be 5~au), the estimated vertical diffusion rate associated with the
turbulence is characterized by . For the disk model considered here, the diffusion rate is such that
particles with sizes up to several centimeters are vertically mixed within the
first pressure scale height. This suggests that the instability of spiral waves
launched by a giant planet can significantly disperse solid particles and trace
chemical species from the midplane. In planet formation models where the
continuous local production of chondrules/pebbles occurs over Myr time scales
to provide a feedstock for pebble accretion onto these bodies, this stirring of
solid particles may add a time constraint: planetary embryos and large
asteroids have to form before a gas giant forms in the outer disk, otherwise
the SWI will significantly decrease the chondrule/pebble accretion efficiency.Comment: Accepted for publication in the The Astrophysical Journal, 19 pages,
12 figures, 1 tabl
Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918
The H1N1 subtype of influenza A virus has caused substantial morbidity and mortality in humans, first documented in the global pandemic of 1918 and continuing to the present day. Despite this disease burden, the evolutionary history of the A/H1N1 virus is not well understood, particularly whether there is a virological basis for several notable epidemics of unusual severity in the 1940s and 1950s. Using a data set of 71 representative complete genome sequences sampled between 1918 and 2006, we show that segmental reassortment has played an important role in the genomic evolution of A/H1N1 since 1918. Specifically, we demonstrate that an A/H1N1 isolate from the 1947 epidemic acquired novel PB2 and HA genes through intra-subtype reassortment, which may explain the abrupt antigenic evolution of this virus. Similarly, the 1951 influenza epidemic may also have been associated with reassortant A/H1N1 viruses. Intra-subtype reassortment therefore appears to be a more important process in the evolution and epidemiology of H1N1 influenza A virus than previously realized
A comparison of host gene expression signatures associated with infection in vitro by the Makona and Ecran (Mayinga) variants of Ebola virus
The Ebola virus (EBOV) variant Makona (which emerged in 2013) was the causative agent of the largest outbreak of Ebola Virus Disease recorded. Differences in virus-host interactions between viral variants have potential consequences for transmission, disease severity and mortality. A detailed profile of the cellular changes induced by the Makona variant compared with other Ebola virus variants was lacking. In this study, A549 cells, a human cell line with a robust innate response, were infected with the Makona variant or with the Ecran variant originating from the 1976 outbreak in Central Africa. The abundance of viral and cellular mRNA transcripts was profiled using RNASeq and differential gene expression analysis performed. Differences in effects of each virus on the expression of interferon-stimulated genes were also investigated in A549 NPro cells where the type 1 interferon response had been attenuated. Cellular transcriptomic changes were compared with those induced by human respiratory syncytial virus (HRSV), a virus with a similar genome organisation and replication strategy to EBOV. Pathway and gene ontology analysis revealed differential expression of functionally important genes; including genes involved in the inflammatory response, cell proliferation, leukocyte extravasation and cholesterol biosynthesis. Whilst there was overlap with HRSV, there was unique commonality to the EBOV variants
The mu problem and sneutrino inflation
We consider sneutrino inflation and post-inflation cosmology in the singlet
extension of the MSSM with approximate Peccei-Quinn(PQ) symmetry, assuming that
supersymmetry breaking is mediated by gauge interaction. The PQ symmetry is
broken by the intermediate-scale VEVs of two flaton fields, which are
determined by the interplay between radiative flaton soft masses and higher
order terms. Then, from the flaton VEVs, we obtain the correct mu term and the
right-handed(RH) neutrino masses for see-saw mechanism. We show that the RH
sneutrino with non-minimal gravity coupling drives inflation, thanks to the
same flaton coupling giving rise to the RH neutrino mass. After inflation,
extra vector-like states, that are responsible for the radiative breaking of
the PQ symmetry, results in thermal inflation with the flaton field, solving
the gravitino problem caused by high reheating temperature. Our model predicts
the spectral index to be n_s\simeq 0.96 due to the additional efoldings from
thermal inflation. We show that a right dark matter abundance comes from the
gravitino of 100 keV mass and a successful baryogenesis is possible via
Affleck-Dine leptogenesis.Comment: 27 pages, no figures, To appear in JHE
Estudio sobre la percepción de la conservación de la naturaleza en las comunidades de La Lucha, Seis Amigos y Pocora Norte y Sur, Costa Rica
Cross-protection against European swine influenza viruses in the context of infection immunity against the 2009 pandemic H1N1 virus : studies in the pig model of influenza
Pigs are natural hosts for the same influenza virus subtypes as humans and are a valuable model for cross-protection studies with influenza. In this study, we have used the pig model to examine the extent of virological protection between a) the 2009 pandemic H1N1 (pH1N1) virus and three different European H1 swine influenza virus (SIV) lineages, and b) these H1 viruses and a European H3N2 SIV. Pigs were inoculated intranasally with representative strains of each virus lineage with 6- and 17-week intervals between H1 inoculations and between H1 and H3 inoculations, respectively. Virus titers in nasal swabs and/or tissues of the respiratory tract were determined after each inoculation. There was substantial though differing cross-protection between pH1N1 and other H1 viruses, which was directly correlated with the relatedness in the viral hemagglutinin (HA) and neuraminidase (NA) proteins. Cross-protection against H3N2 was almost complete in pigs with immunity against H1N2, but was weak in H1N1/pH1N1-immune pigs. In conclusion, infection with a live, wild type influenza virus may offer substantial cross-lineage protection against viruses of the same HA and/or NA subtype. True heterosubtypic protection, in contrast, appears to be minimal in natural influenza virus hosts. We discuss our findings in the light of the zoonotic and pandemic risks of SIVs
- …
