Abstract

We study restriction and extension theory for semibounded Hermitian operators in the Hardy space of analytic functions on the disk D. Starting with the operator zd/dz, we show that, for every choice of a closed subset F in T=bd(D) of measure zero, there is a densely defined Hermitian restriction of zd/dz corresponding to boundary functions vanishing on F. For every such restriction operator, we classify all its selfadjoint extension, and for each we present a complete spectral picture. We prove that different sets F with the same cardinality can lead to quite different boundary-value problems, inequivalent selfadjoint extension operators, and quite different spectral configurations. As a tool in our analysis, we prove that the von Neumann deficiency spaces, for a fixed set F, have a natural presentation as reproducing kernel Hilbert spaces, with a Hurwitz zeta-function, restricted to FxF, as reproducing kernel.Comment: 63 pages, 11 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions