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ABSTRACT

We have recently shown that spiral density waves propagating in accretion disks can undergo a para-
metric instability by resonantly coupling with and transferring energy into pairs of inertial waves
(or inertial-gravity waves when buoyancy is important). In this paper, we perform inviscid three-
dimensional global hydrodynamic simulations to examine the growth and consequence of this insta-
bility operating on the spiral waves driven by a Jupiter-mass planet in a protoplanetary disk. We find
that the spiral waves are destabilized via the spiral wave instability (SWI), generating hydrodynamic
turbulence and sustained radially-alternating vertical flows that appear to be associated with long
wavelength inertial modes. In the interval 0.3 Rp  R  0.7 Rp, where Rp denotes the semi-major
axis of the planetary orbit (assumed to be 5 au), the estimated vertical di↵usion rate associated with
the turbulence is characterized by ↵di↵ ⇠ (0.2� 1.2)⇥ 10�2. For the disk model considered here, the
di↵usion rate is such that particles with sizes up to several centimeters are vertically mixed within
the first pressure scale height. This suggests that the instability of spiral waves launched by a giant
planet can significantly disperse solid particles and trace chemical species from the midplane. In planet
formation models where the continuous local production of chondrules/pebbles occurs over Myr time
scales to provide a feedstock for pebble accretion onto these bodies, this stirring of solid particles may
add a time constraint: planetary embryos and large asteroids have to form before a gas giant forms in
the outer disk, otherwise the SWI will significantly decrease the chondrule/pebble accretion e�ciency.

Keywords: hydrodynamics, instabilities, planets and satellites: formation, planet-disk interaction,
waves

1. INTRODUCTION

When they form, planets leave traces of their pres-
ence in the disks they reside in. The most suggestive
signatures include spiral arms, of which we might al-
ready have observational snapshots (e.g., Muto et al.
2012; Garufi et al. 2013; Grady et al. 2013; Currie et
al. 2014; Benisty et al. 2015; Garufi et al. 2016; Stolker
et al. 2016), though the physical origin of the observed
spiral arms as well as the presence of planet(s) in the
systems are yet to be confirmed.
In our recent work, we have shown that propagating

spiral density waves, such as the ones that could be ex-
cited by a planet embedded in a gaseous protoplanetary
disk, or by gravitational instability (GI), can become
unstable to a spiral wave instability (SWI; Bae et al.
2016). The instability arises because the periodic forc-
ing due to the spiral waves resonantly couples with, and
transfers energy into, pairs of inertial waves (or inertial-
gravity waves) at the expense of the spiral wave itself,
such that the spiral waves partially dissipate. When

jaehbae@umich.edu, r.p.nelson@qmul.ac.uk,
lhartm@umich.edu

the instability tends towards nonlinear saturation, the
flow breaks down into hydrodynamic turbulence, which
in turn can act as an e�cient source of vertical mixing
of trace chemical species and solid particles (Bae et al.
2016).
The level of turbulence in protoplanetary disks plays

an important role in determining the ability of solid par-
ticles to grow from ISM sizes to eventually become plan-
ets. Solid particles grow to millimeters to centimeters in
size through direct sticking collisions, after which point
the so-called “bouncing barrier” limits further growth
by hit-and-stick coagulation (see review by Testi et al.
2014 and references therein). If decimeter-sized particles
are able to form in abundance then streaming instabili-
ties can concentrate these “pebbles” and “boulders” via
aerodynamic drag, and the resulting particle clumps can
collapse gravitationally to form planetesimals of between
25 to 200 km in size (Youdin & Goodman 2005; Jo-
hansen et al. 2007, 2015). Once large planetesimals are
present, gas drag acting on the remaining pebbles can
produce rapid accretion – pebble accretion (Johansen
& Lacerda 2010; Ormel & Klahr 2010; Lambrechts &
Johansen 2012; Morbidelli & Nesvorny 2012). Pebble
accretion involving millimeter-sized chondrules can help
to build up planetary embryos to the size of Mars, and
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can also help to grow 100 km sized asteroids that form
as a result of streaming instabilities into significantly
larger bodies that resemble the largest asteroids in the
asteroid belt (e.g., Johansen et al. 2015). While the for-
mer process – the streaming instability – has been shown
to operate in the presence of moderately strong turbu-
lence with ↵ ⇠ 10�3 (Johansen et al. 2007), where ↵
denotes the canonical Shakura & Sunyaev (1973) stress
parameter, for the latter process – pebble accretion –
to work e�ciently, it is necessary to concentrate pebbles
into a thin layer at the disk midplane such that the scale
height of the pebbles is smaller than the Hill radius of
pebble-accreting planetesimals (Lambrechts & Johansen
2012). Under typical disk conditions, this requires the
scale height of pebbles to be less than ⇠ 1 % of that
of gas, which can only be satisfied with very low tur-
bulence to avoid stirring up the pebbles. A turbulence
level of ↵ & 10�4 may result in a too long timescale for
the formation of planetary embryos or large asteroids
(e.g., Johansen et al. 2015).
In the present paper, we perform three-dimensional

global hydrodynamic simulations to demonstrate that
the SWI operates in the presence of spiral waves excited
by a Jovian mass giant planet, and to estimate the level
of SWI-induced turbulence and the consequent vertical
mixing of solid particles in the terrestrial body-forming
and asteroid belt regions. Our simulations show that the
SWI develops for the spiral waves on timescales on the
order of the planetary orbital time. When the instability
is fully saturated, the vertical di↵usion rate estimated
from gas motions in the interval 0.3Rp  R  0.7Rp,
where Rp is the semi-major axis of the planetary orbit
(assumed to be 5 au in this work), is such that par-
ticles with sizes up to a few centimeters are vertically
mixed within the first pressure scale height of the gas
disk. This result suggests that the instability acting on
the spiral waves from a gas giant can have significant
influence on the dust dynamics and chemical mixing in
protoplanetary disks. In particular, if accretion of chon-
drules/pebbles dominates the growth of terrestrial em-
bryos in the terrestrial planet region, or large asteroids
in the asteroid belt, then we suggest that the SWI can
have a strong influence by limiting chondrule/pebble ac-
cretion e�ciency when a gas giant planet such as Jupiter
forms in the outer disk.
This paper is organized as follows. In Section 2, we

discuss the expected wavelengths of the unstable inertial
waves and the regions of a disk in which the SWI oper-
ates, based on the WKBJ dispersion relations. We de-
scribe our computational setup in Section 3, with a spe-
cial emphasis on the choice of numerical resolution that
suits for capturing unstable inertial modes. In Section 4,
we begin by describing numerical results obtained with
perturbations having monochromatic azimuthal modes
with m = 2 and m = 3, with which the spiral arms
are evenly spaced in azimuth. We then describe results
obtained with a full planetary potential. We present
the analysis on the vertical mixing of particles arising

from the SWI and discuss implications to the formation
and growth of terrestrial bodies and large asteroids in
Section 5, and draw conclusions in Section 6.

2. THEORETICAL EXPECTATIONS

2.1. Monochromatic spiral waves

Before we consider spiral density waves launched by
planets, which consist of a superposition of various
azimuthal components (Goldreich & Tremaine 1979),
we briefly discuss theoretical expectation for the SWI
driven by monochromatic m = 2 and m = 3 spiral
waves to gain insight into the instability. These modes
are chosen because they appear prominently in our sim-
ulations with Jupiter-mass planets, as discussed below.
We focus mainly on spiral waves that propagate in the
disk regions that lie interior to the planet in this pa-
per, and leave discussion of outward propagating spiral
waves for future work. Throughout the paper, we use
the termmonochromatic modes/waves to denote the spi-
ral waves that are evenly spaced in azimuth. For a more
detailed discussion of the theoretical background, we re-
fer readers to Section 2 of Bae et al. (2016) and refer-
ences therein.
In a di↵erentially rotating disk, the WKBJ dispersion

relation for local disturbances can be written as (Good-
man 1993)

!2/c2s
!2 �N2

� k2Z
!2 �N2

� k2R
!2 � 2

= 0. (1)

In the dispersion relation, ! is the mode frequency,  is
the epicyclic frequency, N is the vertical Brunt-Väisälä
frequency, kR and kZ are the radial and vertical wave
numbers associated with the wave vector k = kRêR +
kZ êZ , and cs is the sound speed.
The WKBJ dispersion relation for a spiral wave with

azimuthal mode number m is given by

m2(⌦� ⌦p)
2 = 2 + c2sk

2
R,s, (2)

when self-gravity is neglected and kZ,s = 0 is assumed.
Interior to the inner Lindblad resonance (ILR), this gives
a radial wave number kR,s of

k2R,s =
!2
s � 2

c2s
, (3)

where !s = m(⌦�⌦p) is the Doppler-shifted frequency
of the incoming waves, and ⌦p is the pattern speed of
the spiral wave measured in the inertial frame.
Inertial modes excited by a spiral wave must have ra-

dial length scales that are similar to or smaller than
the wavelength of the incoming wave. Thus, assuming
that the excited inertial modes have very similar spatial
structure and frequencies, which is appropriate to the
high wave number limit, we can relate the wave number
of the excited inertial waves kR,i to kR,s as

kR,i = nkR,s, (4)

where n is an integer. As noted in Bae et al. (2016), this
integer relationship holds for waves in periodic shearing
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boxes, and is introduced for the global models that we
consider here for the purpose of choosing a simple rela-
tion between the wavelengths of the spiral and inertial
waves. Given the radial wave number and the frequency
of the spiral wave (in the local fluid frame), we can es-
timate the vertical wave number of the excited inertial
waves kZ,i using the dispersion relation in Equation (1)
and the resonance condition !i = !s/2 in the high wave
number limit (n � 1; Fromang & Papaloizou 2007).
This results in

k2Z,i =
(!s/2)2

c2s
� n2!

2
s � 2

c2s

(!s/2)2 �N2

(!s/2)2 � 2
, (5)

when the Brunt-Väisälä frequency, N , is important or

k2Z,i =
(!s/2)2

c2s

✓
1� n2 !2

s � 2

(!s/2)2 � 2

◆
(6)

when N is negligible. In order for kZ,i to be real for ar-
bitrary values of n from Equation (6), such that inertial
waves can be excited, one requires

(!s/2)
2 < 2 < !2

s (7)

to be satisfied.
In rotating disks, inertial modes have frequencies in

the interval 0  !i  ⌦. This, together with Equation
(7), implies that for an arbitrary perturbation with az-
imuthal mode number m � 1 the SWI operates in the
radial region of

✓
m� 2

m

◆2/3

Rp  R 
✓
m� 1

m

◆2/3

Rp (8)

in the inner disk and
✓
m+ 1

m

◆2/3

Rp  R 
✓
m+ 2

m

◆2/3

Rp (9)

in the outer disk. Focusing on the inner disk, there will
always be inertial mode pairs available for a resonant
interaction with m = 2 spiral waves having a Doppler-
shifted frequency !s = 2(⌦ � ⌦p) < ⌦ inside the ILR.
On the other hand, for m � 3 waves, the SWI cannot
operate in disk regions where R  ((m � 2)/m)2/3Rp,
because the spiral wave frequency at these radii is too
large, so no inertial modes can participate in a resonant
interaction.
In Figure 1, we present two-dimensional maps showing

the vertical and radial wavelengths of the inertial modes
that satisfy the resonance conditions for monochromatic
m = 2 and m = 3 spiral waves, assuming an adiabatic
response of gas with � = 1.4 and the disk model that
will be introduced in Section 3.2. The wavelengths are
calculated using Equations (3), (4), and (5).
We point out two important features from the figure.

First, as we have shown above, there is a limited region
where the SWI can be triggered for a given monochro-
matic perturbation. At the midplane, where the Brunt-
Väisälä frequency becomes zero, the SWI can operate
in the entire region inside of the ILR for m = 2 waves
(R . 0.63 Rp), whereas it can only operate in the region

Figure 1. (a) Contour plots of the vertical wavelength of

the unstable inertial modes �Z , in units of local scale height,

calculated with Equation (5) and the disk model that will

be introduced in Section 3.2. (b) Same as (a) but for the

radial wavelength �R. (c) The ratio of vertical to radial

wavelength of the inertial modes. In all panels, the black

and white dashed lines indicate where Z = ±1H and ±2H.

The black regions are where the dispersion relation does not

have a physical solution, and thus the SWI is believed to be

forbidden. The red dashed curves indicate where the local

buoyancy frequency equals to a half of the doppler-shifted

frequency of the spiral waves: N2

= (!s/2)
2

. The upper

half of each panel presents the wavelengths of unstable in-

ertial modes in response to monochromatic m = 2 waves,

whereas the lower half of each panel shows those in response

to monochromatic m = 3 waves. We use n = 4 as a repre-

sentative example purely for the purposes of illustration, but

the numbers on the colorbars can be linearly scaled to other

modes as noted in the labels.
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0.48 Rp . R . 0.76 Rp for m = 3 waves. Second, when
buoyancy is considered, the SWI-permitted regions are
confined towards the midplane at the radii where the
SWI can operate because the SWI can operate only in
disk regions where (!s/2)2 . N2 is satisfied (Bae et al.
2016). The vertical extent of this SWI-permitted region
is ⇠ 1H above and below the midplane, and this is where
we will focus on in this paper. While m � 3 modes can
trigger the SWI near the surface region (|Z| & 2H) at
R  ((m � 2)/m)2/3Rp because of buoyancy, and this
may have important implications for the morphology of
spiral arms traced by observations of infrared scattered
light, we do not consider this further here as we are
mainly concerned with the mixing of solid particles lo-
cated near the midplane.

2.2. Planet-induced spiral waves

A Jovian planet on a circular orbit will excite a spi-
ral wave pattern that is a superposition of components
with di↵erent azimuthal mode numbers, but with each
component displaying a pattern speed, ⌦p, that is equal
to the Keplerian angular velocity of the planet. Nonlin-
ear e↵ects may cause the relation between the di↵erent
components to vary as a function of radius. As shown
later in the paper via a Fourier analysis, the spiral wave
pattern at any radius interior to the Lindblad resonances
due to a Jovian planet can be decomposed into a sum of
modes where the dominant contributors are the m = 2
and m = 3 modes. At any point in time, one can assume
that a protoplanetary disk will support the whole spec-
trum of possible inertial modes, which, in the absence
of a strong excitation mechanism, will be present with
very low amplitudes. The presence of a spiral wave pat-
tern consisting of di↵erent azimuthal components, each
with di↵erent Doppler-shifted frequencies as observed by
fluid elements orbiting in the disk, will lead to excita-
tion of those inertial modes that can resonantly interact
with any of the azimuthal mode components that make
up the incoming spiral wave. As such, we expect that
a giant planet-induced spiral wave will lead to the exci-
tation of inertial modes in a manner that is similar to
a superposition of the response to both the m = 2 and
m = 3 spiral modes described above. For lower mass
planets, where the strengths of the spiral wave compo-
nents will not be so strongly concentrated towards the
m = 2 and m = 3 modes, the SWI may also be excited
by the higher-m modes.
Although our focus in this paper is on planets with

circular orbits, it is worthwhile briefly discussing how
the above picture changes if orbital eccentricity is con-
sidered. If the planet is on an eccentric Keplerian orbit,
then m-fold spiral waves are excited at Lindblad reso-
nances with pattern speeds ⌦p = (m± k)⌦pl/m, where
k is a positive integer and ⌦pl is the mean motion of the
planet (Goldreich & Tremaine 1980). When consider-
ing planet-disk interactions at Lindblad resonances, the
strength of the torque exerted on the disk by the planet,
�, scales as � ⇠ e2k, where e is the orbital eccentricity.

Therefore, increasing the planet eccentricity gives rise
to new spiral waves, associated with higher values of k,
being excited, with their amplitudes increasing as the
eccentricity increases. Considering Lindblad resonances
located interior to the planet that launch inward prop-
agating spiral waves, these additional spiral waves can
have higher pattern speeds than the equivalent m-fold
spirals associated with planets on circular orbits. For
example, taking m = 2 and k = 1, we have a wave that
is excited with pattern speed ⌦p = 3/2⌦pl instead of
⌦p = ⌦pl as is the case for a planet on a circular orbit.
Clearly, introducing the possibility of eccentric orbits in-
creases the range of inertial mode frequencies that can
be resonantly excited.

3. NUMERICAL METHODS

3.1. Basic Equations

We solve the hydrodynamic equations for mass, mo-
mentum, and internal energy conservation in the three-
dimensional spherical coordinates (r, ✓,�):

@⇢

@t
+r · (⇢v) = 0, (10)

⇢

✓
@v

@t
+ v ·rv

◆
= �rP � ⇢r(�⇤ + �p), (11)

@e

@t
+r · (ev) = �Pr · v +Qcool. (12)

In the above equations, ⇢ is the mass density, v is the
velocity, P is the pressure, �⇤ = GM⇤/r is the gravita-
tional potential from the central star, �p is the external
potential (see below), e is the internal energy per unit
volume, and Qcool is the cooling rate (see below).
In the case of monochromatic spiral waves, we imple-

ment the following potential form:

�p = A cos[m(�� ⌦pt)]e
�(R�Rp)

2/�2

p . (13)

Here, A determines the spiral wave amplitude which is
assumed to be constant over time t, m is the azimuthal
mode number, ⌦p is the pattern speed, R = r sin ✓ is
the cylindrical radius, Rp is the radius about which
the potential is centered, and �p is the radial width
of the potential. We assume that the pattern speed
is the local Keplerian frequency at its central position
⌦p = (GM⇤/R

3
p)

1/2 and that �p = 0.2Rp.
When a planetary companion is considered, its poten-

tial is included as

�p = � GMp

(|r� rp|2 + b2)1/2
, (14)

where Mp is the planetary mass, r and rp are the radius
vectors of the center of grid cells in question and of the
planet, and b is the smoothing length. We increase the
planetary mass from zero to its full mass (i.e., 1MJ) over
ten orbital times. In three-dimensional calculations, the
smoothing length is used only to avoid singularities in
the potential on the grid scale. We thus adopt the cell di-
agonal size ((�r)2+(r�✓)2+(r��)2)1/2 at the position
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Figure 2. Two-dimensional R�Z distributions of (left) optical depth ⌧ and (right) the dimensionless cooling time � = t
cool

⌦K
for the initial disk. The red dashed curves in the right panel indicate where t

cool

⌦K = 1. The main body of the disk is expected

to behave adiabatically, since the cooling timescale is much longer than the dynamical timescale in the region.

of the planet as the smoothing length. With the disk
model introduced in Section 3.2, the smoothing length
corresponds to about 18% of a scale height, or about
13% of the Hill radius when the planet is fully grown to
1 MJ . In the planet run, we also include the indirect
potential that arises because the origin of the coordinate
system is based on the central star and not the center
of the mass of the system.
We make use of an adiabatic equation of state. The

gas pressure and the internal energy are thus related
through P = (� � 1)e, with an adiabatic index � = 1.4
adopted. To realize the radiative cooling of the disk we
implement a simple, but physically motivated, cooling
scheme. This assumes relaxation of the internal energy
towards the background disk temperature T0 at each
location on the cooling timescale tcool. Then, the cooling
rate can be written as

Qcool = �⇢cv
T � T0

tcool
, (15)

where cv denotes the heat capacity at constant volume.
The cooling timescale is calculated every time step

for each grid cell, using the optical depth and the tem-
perature. We follow the approach used in Lyra et al.
(2016) and previously in Lyra et al. (2010) and Horn
et al. (2012) in a vertically-integrated two-dimensional
approximation. To briefly summarize, the cooling
timescale is estimated to be the radiative timescale that
is defined as

tcool ⌘
R
edVR

F n̂ · dA
, (16)

where e = ⇢cvT and F = |F| = �T 4/⌧e↵ with � and ⌧e↵
being the Stefan-Boltzmann constant and the e↵ective

optical depth. The e↵ective optical depth ⌧e↵ is given
by

⌧e↵ =
3

8
⌧ +

p
3

4
+

1

4⌧
(17)

to take account of both optically thick and thin limits
(Hubeny 1990; D’Angelo et al. 2003).
The integration in Equation (16) is done over a sphere

that has a radius equal to the local pressure scale height.
This results in a cooling time of

tcool =
⇢cvH⌧e↵
3�T 3

. (18)

To obtain the optical depth ⌧ , we first calculate the
optical depth due to the material above and below each
grid cell as

⌧upper =

Z z
max

z

⇢(z0)(z0)dz0 (19)

and

⌧lower =

Z z

z
min

⇢(z0)(z0)dz0. (20)

In practice, the integration is done in ✓, instead of z,
for simplicity. Then, we calculate the optical depth as
1/⌧ = 1/⌧upper + 1/⌧lower to give a correct midplane
cooling rate (Lyra et al. 2016). For the opacity  in the
above equations, we use the Rosseland mean opacity of
Zhu et al. (2009).
The optical depth and the cooling time of the initial

disk are presented in Figure 2. As shown, the main body
of the disk is optically thick, with the cooling time much
longer than the dynamical time: tcool � 1/⌦K . There-
fore, we expect that the main body of the disk behaves
essentially adiabatically, and hence will be stable against
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the growth of the vertical shear instability (Nelson et al.
2013).
Our calculations are inviscid, but artificial viscosity

and the associated heating are included in the momen-
tum and internal energy equations (Stone & Norman
1992). As discussed in Bae et al. (2016), the e↵ec-
tive dimensionless kinematic viscosity associated with
the numerical di↵usion for FARGO3D (Beńıtez-Llambay
& Masset 2016) operates with a value that is below
⌫ = 10�6.

3.2. Disk Models

We begin with an initial radial power-law temperature
distribution in the disk that is independent of height:

T (R) = Tp

✓
R

Rp

◆q

, (21)

where Tp is the temperature at the location of the per-
turber R = Rp. The isothermal sound speed is related
to the temperature by c2s = RT/µ, where R is the gas
constant and µ is the mean molecular weight. Thus,
Equation (21) corresponds to the radial sound speed dis-
tribution given by

cs(R) =
Hp

Rp

✓
R

Rp

◆q/2

. (22)

In all models, we adopt Hp/Rp = 0.05 and q = �1 such
that the entire disk has the aspect ratio of 0.05.
The initial density and azimuthal velocity profiles are

constructed to satisfy hydrostatic equilibrium (e.g., Nel-
son et al. 2013):

⇢(R,Z) = ⇢p

✓
R

Rp

◆p

exp

✓
GM⇤
c2s


1p

R2 + Z2
� 1

R

�◆

(23)
and

v�(R,Z) =


(1 + q)

GM⇤
R

+ (p+ q) c2s � q
GM⇤p
R2 + Z2

�1/2
.

(24)
We choose the initial density distribution in such a way
that the vertically-integrated surface density ⌃ becomes
⌃ = 5⌃MMSN, where ⌃MMSN is the minimum mass solar
nebular (MMSN) model of Hayashi (1981). A value of
p = �5/2 is adopted accordingly, to have the surface
density power-law slope that matches to the slope of
the MMSN model, �3/2.
The initial radial and meridional velocities are set to

zero, but uniformly distributed random perturbations
are added as white noise, at the level of 10�6 cs, to
the initial meridional velocity field in order to seed the
instability.

3.3. Computational Setup

We expect the main body of the disk to behave adia-
batically, since the disk cooling timescale is much longer
than the dynamical timescale in the region (see Figure
2). Thus, the regions in which the SWI is allowed to op-
erate can be inferred using the linear analysis described

in Section 2 and depicted in Figure 1, assuming an adi-
abatic equation of state with � = 1.4.
As seen in Figure 1, the SWI-permitted regions are

confined around the midplane, with a thickness that is
as small as ⇠ 1H above and below the midplane. There-
fore, we aim to have a numerical resolution with which
unstable inertial modes with �Z ' 1H can be well cap-
tured. At the midplane, the ratio of the vertical to radial
wavelengths of unstable inertial modes increases over ra-
dius, except near the ILR where a singularity appears.
The largest ratio of �Z/�R for perturbations withm � 2
is ' 1.5 (see Figure 1), and thus the radial wavelength
that we aim to resolve will be �R ' (2/3)H.
Since inertial modes can have arbitrarily small length

scales, smaller scale unstable modes can only be cap-
tured with higher resolutions than the one used in the
present work. On the other hand, it seems that the
modes with the largest length scale contain the largest
amount of kinetic energy (Bae et al. 2016). In the simu-
lations presented in Section 4 as well as the ones in Bae
et al. (2016), we observe that smaller scale modes grow
at earlier times, but only with small velocity amplitudes.
These modes are then masked by larger scale modes that
grow at later times with larger velocity amplitudes, sup-
porting the conjecture that the modes with the largest
length scales contain most of the kinetic energy as the
system approaches the nonlinear saturated state. One
e↵ect of under-resolving the small scale modes, however,
is that the development of a realistic breakdown into
hydrodynamic turbulence may be prevented, as the cas-
cade of energy from large to small scales in the fully
saturated nonlinear regime will be prevented, a↵ecting
the nature of the flow and the statistics of the quasi-
turbulent flow that develops due to the SWI.
Our simulation domain extends from rin = 0.2Rp to

rout = 1.5Rp in radius, from ⇡/2 � 0.2 to ⇡/2 + 0.2
in the meridional direction (covering 4 scale heights
above and below the midplane), and from 0 to 2⇡ in
azimuth. We have tested with various numerical res-
olutions and find that 12 grid cells per wavelength is
required to properly resolve unstable inertial modes. To
achieve �r = (1/12)�R = (1/12) ⇥ (2/3)H, or equiv-
alently �r/r = (1/18)H/R at the midplane, we adopt
726 logarithmically-spaced radial grid cells. We adopt
144 and 754 uniformly-spaced grid cells in the merid-
ional and the azimuthal directions, respectively, with
which choice �r : r�✓ : r�� ' 1 : 1 : 3.
The radial boundary condition is chosen to have a zero

gradient for all variables. We further implement a wave
damping zone (de Val-Borro et al. 2006) in the intervals
r = [rin, 1.2rin] and r = [0.9rout, rout], since reflected
waves at the radial boundaries may a↵ect triggering and
growth of the SWI, as they have the same pattern speed
as the incoming waves. Periodic boundary conditions
are used in azimuth since the simulation domain covers
2⇡. At the meridional boundaries, we use an outflow
boundary condition such that all velocity components in
the ghost zones have the same values as the last active
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zones, but the meridional velocity is set to 0 if directed
toward the disk midplane. The temperature in the ghost
zones is set to have the same value as in the last active
zones. The density in the ghost zone is then obtained
by solving the hydrostatic equilibrium in the meridional
direction:

1

⇢

@

@✓
(⇢c2s) =

v2�
tan ✓

. (25)

We make use of FARGO3D (Beńıtez-Llambay & Mas-
set 2016), which runs on both central processing units
(CPUs) and graphics processing units (GPUs). In order
to deal with the high numerical resolution, our calcula-
tions use a cluster of GPUs, which allows us to perform
the calculations within a reasonable time frame thanks
to a large speed up with respect to CPUs. With four
NVIDIA Tesla K20x GPUs on the University of Michi-
gan high-performance computing cluster1, it takes about
one month for the planet run in Section 4.2 to evolve
for 200 orbits. We enable the FARGO (Fast Advection
in Rotating Gaseous Objects) orbital advection module
(Masset 2000).
In the following sections we will use the orbital dis-

tance of the planet (or perturbing potential) Rp as the
length unit (assumed to be 5 au), and the orbital time
1 torb at R = Rp as the time unit.
Since we adopt physical units to consider cooling, the

models are not scalable in principle. However, we believe
that the results can be qualitatively applicable as far as
the main body of a disk is su�ciently optically thick,
because the disk response to spiral waves is not very
sensitive to the cooling timescale when � ⌘ tcool⌦K & 1
(Zhu et al. 2015, and also from our test runs during early
phases of the present work).

3.4. Diagnostics

In order to examine the growth and the saturation of
the SWI, we compute the volume-integrated meridional
kinetic energy e✓:

e✓ =
1

2

Z

V

⇢v2✓ dV. (26)

While the velocity perturbation driven by spiral waves
is larger at high altitude than near the midplane in gen-
eral, e✓ traces perturbations near the midplane region
because of the vertically stratified density structure.
In the figures presenting the meridional kinetic energy,

we normalize e✓ by eth which we define as the volume-
integrated kinetic energy of gas parcels assuming that
they move at the local sonic velocity:

eth =
1

2

Z

V

⇢cs
2 dV. (27)

We also compute the Shakura-Sunyaev stress param-

1 http://arc-ts.umich.edu/systems-and-services/flux/

eter ↵r� as

↵r�(r, ✓) =
h⇢�vr�v�i

P (r)
, (28)

where P (r) is a density-weighted mean pressure at ra-
dius r, in order to examine the sustained level of angu-
lar momentum transport driven by the turbulent flow
at saturation of the instability (although we note that a
contribution to ↵r� also arises from the propagating spi-
ral waves that is di�cult to disentangle from that arising
from the SWI-induced turbulence).

4. RESULTS

4.1. Results with Monochromatic Waves

Before we describe our main results with a planet, we
introduce models with monochromatic perturbations.
The perturbing waves are imposed using Equation (13)
with azimuthal mode numbers m = 2 (Section 4.1.1;
hereafter m = 2 model) or m = 3 (Section 4.1.2; here-
after m = 3 model). The potential amplitudes are cho-
sen so that the linear phase of the instability spans sev-
eral orbital times, and therefore the growth of individual
unstable modes can be captured: A = 4⇥ 10�3 for the
m = 2 model and A = 5⇥ 10�4 for the m = 3 model.

4.1.1. m = 2 Model

In Figure 3, we present the density distribution ⇢/h⇢i
for m = 2 model, where the brackets denote an az-
imuthal average, along with the meridional velocity dis-
tribution near the midplane where the SWI is expected
to operate. The density perturbation is about 10% in
the midplane and about 30% at the surface when the
spiral waves are fully established. The larger pertur-
bation towards the surface is presumably because of a
nonlinear e↵ect due to faster advection of the wave at
higher altitudes in the disk (Bae et al. 2016, see also Zhu
et al. 2015).
The checkerboard pattern shown in the meridional

velocity distribution is a generic feature of the lin-
ear growth phase of the SWI (Bae et al. 2016), and
was also observed by Fromang & Papaloizou (2007) in
their shearing box simulations of nonlinear, axisymmet-
ric sound waves propagating in astrophysical disks. As
expected from the dispersion relations, the regions in
which the SWI develops are confined toward the mid-
plane, because the large Brunt-Väisälä frequency near
the surface does not allow any inertial modes there to
resonantly interacting with the incoming m = 2 waves.
During the linear phase, the magnitude of the perturbed
meridional velocity increases over time, but remains a
few to about ten percent of the local sound speed. The
wavelengths of the dominant unstable inertial modes
varies over radius: at the midplane, �R ' �Z ' 1H
at R ⇠ 0.4, whereas �R ' 1H and �Z ' 2H at R ⇠ 0.6.
The ratio of vertical to radial wavelengths of the un-
stable inertial modes increases toward larger radii and
height. Note that these unstable mode properties are
well described by the linear analysis introduced in Sec-
tion 2.
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Figure 3. (Left Top) Two-dimensional distribution of density perturbation ⇢/h⇢i in a R � Z plane for m = 2 model. The two

white curves near the midplane indicate where the local Brunt-Väisälä frequency equals to one half of the doppler-shifted wave

frequency of spiral waves (N2

= (!s/2)
2

), between which region is expected to be unstable to the SWI. (Left Bottom) Contour

plots of the meridional velocity normalized by the local sound speed, for the dotted rectangle region in the left top panel. The

x and y axes are drawn isotropically so that the radial and vertical wavelengths of unstable inertial modes can be compared

with each other from the figure. The black dashed lines indicate where Z = ±1H. Note that the SWI has grown in the entire

disk region inside the ILR. (Right) Time evolution of the meridional kinetic energy e✓ at various radius bins, normalized by e
th

in each bin. Note that the exponential growth of the instability appears at earlier times for smaller radii.

Also shown in Figure 3 is the time evolution of the
volume-integrated meridional kinetic energy e✓ for vari-
ous radius bins. The exponential growth of e✓, for exam-
ple during t ⇠ 15�21 torb at 0.25 < R < 0.35, indicates
the development of the SWI. At smaller radii the insta-
bility becomes apparent at earlier times because of the
shorter interaction period between inertial modes and
the spiral waves.

4.1.2. m = 3 Model

Figure 4 displays the density distribution ⇢/h⇢i for the
m = 3 model. The density perturbation is about 5% in
the midplane and about 20% at the surface when the
m = 3 spiral waves are fully established. As seen in the
figure, the instability is developing beyond R & 0.5 at
t = 22 torb. The SWI does not operate inward of this ra-
dius because the Doppler-shifted perturbation frequency
from the incoming m = 3 waves is too large to excite
any inertial modes, which is in very good agreement with
the expectation from the dispersion relations. As in the
m = 2 model, the ratio of vertical to radial wavelength
of unstable inertial modes increases towards larger radii
and height.
The time evolution of e✓ is presented in Figure 4. The

exponential growth of e✓ is only observed in 0.45 < R <
0.55 and 0.55 < R < 0.65, supporting the conjecture
that the instability is forbidden at smaller radii. The
increase in e✓ at later times (e.g., t & 30 torb) in the
inner disk regions of R < 0.45 is probably because the
spiral waves propagate through the turbulent region of
R > 0.45, and hence generate some vertical motion there
due to the curvature of the spiral wave fronts in the
meridional plane discussed in Bae et al. (2016).

4.2. Results with a Perturbing Planet

We now describe the results for the planet run. We
first discuss the overall evolution in Section 4.2.1 and
then focus on the development of the SWI in Section
4.2.2.

4.2.1. Overall Evolution

We evolve the planet run for 200 torb. In Figure 5, we
present the azimuthally averaged surface density distri-
butions at every 40 torb. The planet opens a gap around
its orbit and creates a mild density bump at the inner
gap edge. In the inner disk (R . 0.5), the disk looses
material through the meridional boundary because of
vertical flows induced by the spiral waves.
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Figure 4. Same as Figure 3, but for m = 3 model. Note that the instability has grown beyond R ⇠ 0.5, but not inward of the

radius as no inertial modes there have an adequate frequency to satisfy the resonant condition with the incoming spiral waves.

Also, the exponential growth in e✓ appears for 0.45 < R < 0.55 and 0.55 < R < 0.65 but not at the inner two radius bins,

supporting the fact that the SWI does not operate at R . 0.5. The increase in e✓ in the inner two radius bins at later times

(t & 30 t
orb

) is presumably because the spiral waves propagate through the SWI-turbulent region.

Figure 5. Radial distributions of the azimuthally averaged

surface density at t = 0, 40, 80, 120, 160, and 200 t
orb

.

As inferred from the figure, the depth of the gap
does not reach full saturation by the end of the run at
200 torb. Recently, Fung & Chiang (2016) carried out
three-dimensional calculations to examine gap opening
by planets in a locally isothermal disk. Their results

indicate that the saturation of the gap depth requires
about 1000 planetary orbits (or even longer depending
on the planetary mass) with a disk viscosity of ↵ = 10�3.
On the other hand, in their 1 MJ case, the density per-
turbation driven by spiral waves remains roughly con-
stant after 100 planetary orbits (Fung, D., private com-
munication). It is therefore reasonable to assume that
the amplitudes of the spiral waves in our simulations
have also saturated.
In Figure 6, we present the density distribution ⇢/h⇢i

in the midplane at t = 10 torb, at which time the plan-
etary mass is fully grown to 1 MJ . The planet excites
three distinguishable spiral arms. This multi-armed fea-
ture can be understood as a consequence of non-linear
mode-coupling (e.g., Artymowicz & Lubow 1992; Lee
2016) and has been shown to arise in recent numerical
simulations (e.g., Fung & Dong 2015; Juhász et al. 2015;
Zhu et al. 2015). Looking in more details at the spiral
arms, the first arm is connected to the planet, and the
second and third arms start to appear at R ⇠ 0.7 and
at R ⇠ 0.6, respectively. The azimuthal separation be-
tween the spiral arms, as well as the relative strength of
the arms, vary over radius. At R = 0.4, for instance,
the second arm is ⇠ 100� ahead of the first arm and the
third arm is ⇠ 100� behind the first arm. The density
perturbation by the second arm at this radius is about



10 Bae et al.

Figure 6. Two-dimensional � � R distribution of ⇢/h⇢i in

the midplane, taken when the planetary mass is fully grown

to 1 MJ at t = 10t
orb

. The planet is located at (�, R) =

(180, 1.0). The y-axis is plotted using a logarithmic scale to

stretch the inner disk.

twice as strong as the perturbation driven by the other
two arm. On the other hand, at R = 0.3, the second
arm is ⇠ 75� ahead of the first arm and the third arm is
⇠ 120� behind the first arm. The density perturbation
by the second arm is still the strongest, but only ⇠ 25%
stronger than the perturbation driven by the first arm.
In order to more quantitatively examine the gas re-

sponse to the spiral waves, in Figure 7 we plot the
time evolution of the Fourier amplitudes of the den-
sity perturbation at di↵erent radii. As seen in the fig-
ure, spiral waves driven by a planet are not monochro-
matic, but consist of various azimuthal components that
are superimposed on each other. We emphasize that,
most importantly for our purpose, the Fourier ampli-
tudes of m = 1� 5 modes remain nearly constant after
t ⇠ 100 torb at all radii, despite the fact that the gap
depth has increased by about a factor of two in between
100 torb and 200 torb. Another important feature is
that the strongest mode shifts toward smaller azimuthal
wave numbers at smaller radii. The m = 3 mode has
the largest Fourier amplitude at 0.55 < R < 0.65, the

Figure 7. Time evolution of the Fourier amplitudes |Am|
for various azimuthal modes (m = 1� 5) in di↵erent radius

bins. Note that the amplitudes remain nearly constant after

⇠ 100 t
orb

.

m = 2 and m = 3 modes have a comparable ampli-
tude at 0.45 < R < 0.55, and the m = 2 dominates at
0.25 < R < 0.45. For completeness, we note that there
are no m = 1 spiral modes that propagate interior to the
planet because formally the m = 1 ILR is not present in
the disk. The appearance of a finite amplitude m = 1
Fourier component arises presumably because the disk
generates an m = 1 perturbation due to the appearance
of a low amplitude vortex, or because the disk becomes
mildly eccentric.

4.2.2. Spiral Wave Instability
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Figure 8. Two-dimensional distributions of the meridional velocity in a R�Z plane at (left) t = 12.2 t
orb

and (right) t = 19.2 t
orb

.

The two sets of white curves indicate where the local Brunt-Väisälä frequency equals to one half of the Doppler-shifted wave

frequency, for monochromatic m = 2 waves (the ones close to the midplane) and m = 3 waves (the ones close to the surface).

The vertical dashed line indicates the radial location inward of which the SWI is forbidden for monochromatic m = 3 waves.

The black dashed lines denotes where Z = ±1H. The two axes are drawn isotropically.

Figure 9. (Left) Time evolution of the meridional kinetic energy e✓ at various radius bins, normalized by e
th

in each bin.

(Right) Time evolution of the Reynolds Stress ↵r� at various radius bins. In both panels, we add vertical o↵sets of 0.001, 0.002,

0.003, and 0.004 to the blue, green, yellow, and red curves for illustration purposes.

The SWI starts to grow from very early times even
before the planetary mass is fully grown (t ⇠ 4� 5 torb)
at R & 0.5, because the perturbation is strong enough
there even with a sub-Jovian mass planet. The weak,
wave-like inter-arm structures at R & 0.5 and the break-
up of the second arm at R ⇠ 0.6� 0.7 seen in Figure 6,
are some of the indications of the instability.
In Figure 8, we display the meridional velocity field

in a vertical plane at t = 12.2 torb and t = 19.2 torb.
In the snapshot taken at t = 12.2 torb, one can see the
checkerboard pattern suggesting that the SWI is grow-
ing there, although the individual unstable modes are
not as clearly identifiable as in the monochromatic case
due to the complex nature of planet-driven waves (i.e.,
superposition of various azimuthal modes). However, we
note that there is no signature of the SWI in R . 0.5
at this time epoch. This is probably because (1) the
perturbation in the region is small compared with the
R & 0.5 region (Figure 6) and/or (2) the m = 3 compo-
nent, with which the SWI is forbidden in this region, has
a comparable power to the m = 2 mode during the early
evolution (e.g., 0.35 < R < 0.45 region in Figure 7) so

the growth rate of the instability could be reduced. At
t = 19.2 torb, checkerboard patterns appear in the inner
disk region of R . 0.5. The steep increase in the merid-
ional kinetic energy around t = 20 torb, particularly for
the 0.25 < R < 0.35 region, presented in Figure 9 sup-
ports the suggestion that the SWI is developing in the
region.
As shown in Figure 9, the overall perturbed vertical

kinetic energy and the stress associated with the com-
bined action of the propagating spiral waves and the
SWI (we have not sought to disentangle the contribu-
tions from these in this paper) reach quasi-steady state
after ⇠ 100 torb. This adds further evidence that the
strength of the SWI is probably not very sensitive to the
gap depth after this point as the spiral wave amplitudes
have reached steady values. We note that e✓ increases
after ⇠ 120 torb for 0.55 < R < 0.75. However, we do
not find any significant changes in the strength of spi-
ral arms or background disk structures to explain this
rise. One possible explanation is that some large-scale
inertial modes, which have to have smaller growth rates
than small-scale modes (Fromang & Papaloizou 2007),



12 Bae et al.

become unstable at this time, although we were not able
to identify any corresponding individual mode growing
as the disk has already developed strong vertical flows
by this time, which we will discuss now.
In Figure 10, we present a three-dimensional global

view of the meridional velocity and the density at the
end of the simulation (t = 200 torb). As shown, the
checkerboard meridional velocity patterns merge to cre-
ate radially alternating vertical flows when the SWI sat-
urates. Such vertical flows have been pointed out in
the non-stratified, isothermal cylindrical models of Bae
et al. (2016), in which other sources capable of induc-
ing vertical motion, such as the vertical shear instabil-
ity that is known to cause the excitation of corrugation
modes (Nelson et al. 2013), are absent. We thus believe
that the alternating vertical flow is a generic outcome
of the SWI. Visual inspection of the upper panel of fig-
ure 10 suggests the azimuthal structure of these modes
is of low degree, corresponding to perhaps a mixture of
m = 0 corrugation-type modes and/or m = 1 warp or
tilt modes, which are inertial modes for which the verti-
cal velocity perturbations have no nodes in the vertical
direction. In the case of m = 0 corrugation modes, the
whole disk column at a given radius, including the mid-
plane, moves up and down in a coherent manner. For
m = 1 tilt modes the disk acts as a series of narrow
rings each of which tilts rigidly. As these disturbances
arise in the form of waves, they propagate through the
disk as corrugation or warping disturbances. The ver-
tical length scale of the vertical flows is similar to the
thickness of the disk region in which the SWI is permit-
ted, suggesting that it is set by the wavelength of the
largest unstable inertial modes that are allowed to grow.
So these might be modes which are excited directly by
the SWI, or they may be the result of nonlinear mode
coupling which allows energy to seep into these modes
from other modes that are excited by the SWI. Being
coherent and quite large scale, once excited these cor-
rugation/tilt modes become a prominent feature of the
flow because they do not damp e�ciently. We find that
the associated vertical flows can have perturbed verti-
cal velocities that are in the range ⇠ 30 � 50% of the
local sound speed. One caveat, however, which we have
already alluded to in Section 3.3 and which causes us
to be cautious in interpreting our results, is that a res-
olution of ⇠ 18 cells per scale height in the vertical and
radial directions does not allow for a turbulent cascade
to develop e�ciently. While some transfer of energy to
small scales undoubtedly arises in our simulations, lead-
ing to dissipation on the grid scale, it may also be the
case that the low resolution also favors the development
of the SWI in such a manner that the large scale modes
are more prominent than they would be in a more highly
resolved simulation. Testing the outcome of the SWI as
a function of resolution is a task that will be undertaken
in the future when available computational resources al-
low such a study to be conducted.

5. DISCUSSION

5.1. Particle Stirring Induced by the SWI

We measure the vertical di↵usion coe�cient to esti-
mate the rate of vertical mixing of dust particles induced
by the SWI. In order to do this, we restart the planet
run described in Section 4.2 from t = 200torb, with out-
puts of the meridional velocity in three dimensions every
0.005 torb. We calculate the vertical di↵usion coe�cient
using the approximation DZ = hv2Zitcorr, where tcorr is
the correlation time of the vertical velocity fluctuations,
vZ (Fromang & Papaloizou 2006). In practice, we use
the meridional velocity v✓ rather than vZ . The quantity
hv2Zi represents the ensemble and time average of the
mean velocities calculated at all grid cells at the cylin-
drical radii listed below. Using this definition for the
di↵usion coe�cient implicitly assumes that the turbu-
lence properties are uniform at all heights for each value
of R.
In obtaining an estimate for tcorr, we generate a

time series for v✓ at various radii in the disk (R =
0.3, 0.4, 0.5, 0.6, and 0.7), within |Z| < 1H. We then
compute the autocorrelations of the time series and fit
the computed autocorrelations with a form of

S(t) = [(1� a) + a cos(2⇡!t)]e�t/t
corr , (29)

following Nelson & Gressel (2010). Here, a indicates the
relative strength of the sinusoidal feature in the auto-
correlation function, ! is the frequency associated with
the sinusoidal component, and tcorr is the correlation
time. Figure 11 shows an example of the fit at R = 0.6.
For this example, the correlation time is 0.46 torb or
0.99 ⌦�1. While it varies over radius, note that the cor-
relation time is of order of ⌦�1, which is longer than
the ones obtained for MHD turbulence in protoplane-
tary disk simulations (⇠ 0.1⌦�1; Fromang & Papaloizou
2006; Yang et al. 2009; Nelson & Gressel 2010). We sus-
pect that this longer correlation time, combined with
the prominent oscillatory component displayed by the
autocorrelation function, may arise because of the con-
tribution of the coherent radially-alternating flows that
arise in the simulations as described above, such that
the resulting flow is a mixture of coherent vertical mo-
tion and smaller scale turbulence. The correlation time
obtained for various radii is listed in Table 1.
With the vertical velocity fluctuation that is 5� 11 %

of the local sound speed, the vertical di↵usion coe�cient
is (0.4 � 2.3) ⇥ 10�4 in natural units between R = 0.3
and R = 0.7. Then, the vertical mixing time tmix can
be estimated as

tmix = H2/DZ . (30)

Using the ↵ prescription

↵di↵ = DZ/(csH), (31)

the vertical di↵usion rate is characterized by values of
↵di↵ in the range ↵di↵ = (0.2�1.2)⇥10�2, which is com-
parable to or greater than the Reynolds stress measured
at these radii (see Figure 9).
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Figure 10. (Top) Three-dimensional global view of the meridional velocity field in the bottom half of the simulations domain:

the upper surface shows the disk midplane. The quantity is plotted in units of the local sound speed: v✓/cs. r on the X-axis, ✓
on the Y-axis in units of radians, and � on the Z-axis in units of radians. Note that the instability creates radially-alternating

vertical flows when saturated. The vertical flows have a magnitude of order of a few tens of percent at the midplane. (Bottom) A

volume-rendering view of the density in a logarithmic scale. The snapshots are taken at the end of the simulation (t = 200 t
orb

).

The planet is located at (X,Y, Z) = (1.0,⇡/2, 0.0).
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Table 1. Planet Run Results

R hv2✓i hv2✓i1/2/hcsi t
corr

t
corr

DZ ↵
di↵

t
mix

h⇢gi (9/4)� s
mix

(t
orb

) (⌦

�1

) (t
orb

) (g cm

�3

) (cm) (cm)

0.3 3.08⇥ 10

�5

0.050 0.43 2.62 8.32⇥ 10

�5

0.0065 0.62 8.05⇥ 10

�10

2.49 4.63

0.4 3.15⇥ 10

�5

0.059 0.55 2.17 1.09⇥ 10

�4

0.0075 0.90 4.32⇥ 10

�10

4.64 3.20

0.5 2.26⇥ 10

�5

0.055 0.51 1.44 7.24⇥ 10

�5

0.0043 2.06 3.36⇥ 10

�10

5.96 1.75

0.6 8.08⇥ 10

�5

0.112 0.46 0.99 2.34⇥ 10

�4

0.0124 0.95 2.16⇥ 10

�10

9.28 3.99

0.7 1.67⇥ 10

�5

0.054 0.41 0.70 4.30⇥ 10

�5

0.0020 7.34 2.30⇥ 10

�10

8.71 0.82

a
For the quantities in the brackets h i, we average them over azimuth within |Z| < 1H.

Figure 11. The normalized autocorrelation function (ACF)

at R = 0.6 from the planet run with diamond symbols, and

the fit obtained with Equation (29) with solid curves.

Since we are interested in the maximum size of par-
ticle that can be vertically mixed by the SWI-induced
turbulence, we calculate the settling time of particles
and compare it with the vertical di↵usion time. The
settling time can be obtained from the terminal velocity
by equating the drag force and the vertical component
of the stellar gravity. The drag force depends on the size
of the particle s, relative to the mean free path of the
gas � ⌘ µmH/⇢g�, where µ = 2.4 is the mean molecular
weight of gas, mH is the mass of a Hydrogen atom, ⇢g
is the gas mass density, and � = 2⇥ 10�15 cm2 (Chap-
man & Cowling 1970) is the molecular collisional cross
section. When s  (9/4)�, the Epstein law is applicable
and the drag force FD can be written as

FD =
4

3
⇡s2⇢gvgvth, (32)

where vg is the gas velocity and vth =
p
8/⇡cs is the

thermal velocity of gas molecules. When s � (9/4)�, we
can apply the Stokes law and the drag force FD can be
written as

FD =
1

2
⇡s2⇢gv

2
gCD, (33)

where CD is the drag coe�cient. We use CD = 24Re�1

(Probstein & Fassio 1969; Whipple 1972), since the
Reynolds number Re is measured to be always smaller
than unity in the region and for the particle sizes of in-
terest. Here, Re ⌘ 2s⇢gvg/⌘ and ⌘ ⌘ (1/2)⇢gvth� is the
gas molecular viscosity.
By setting FD = ms⌦2

Kz, where ms = (4/3)⇡s3⇢s is
the mass of a solid particle and ⇢s = 3 g cm�3 is the
internal density of the dust particles, one can obtain the
settling time tsettle = z/vg. For the Epstein regime, this
gives

tsettle =
1

s

⇢g
⇢s

vth
⌦2

K

, (34)

whereas for the Stokes regime,

tsettle =
9

4

�

s2
⇢g
⇢s

vth
⌦2

K

. (35)

It is immediately obvious from Equations (34) and (35)
that the equations result in the same settling time when
s = (9/4)�. Also, note that Equations (34) can be writ-
ten as tsettle = 1/(ts⌦2

K), or tsettle/tdyn = 1/(2⇡ts⌦K),
where the stopping time ts for the Epstein regime is de-
fined by ts = (⇢ss)/(⇢gvth) (Weidenschilling 1977) and
tdyn = 2⇡/⌦K .
Then, the maximum particle size smix that is signifi-

cantly mixed by the turbulence (i.e., tmix ⇠ tsettle) can
be computed by setting Equation (30) to either Equa-
tion (34) or (35). This leads to

smix =

8
>>><

>>>:

r
8

⇡

⇢g
⇢s

DZ

csH
H for the Epstein regime,

 
9

4

r
8

⇡

⇢g
⇢s

DZ

csH
H�

!1/2

for the Stokes regime.

(36)
As seen in Table 1, in the interval 0.3  R  0.7, we
find that solid particles s ⇠ 0.8 � 4.6 cm in size can be
vertically mixed within the first pressure scale height.
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We note that the di↵usion coe�cient DZ obtained
from our simulation is for gas molecules. For solid par-
ticles that are not perfectly coupled to gas, the di↵u-
sion coe�cient is DZ,s ' DZ/(1 + St2) (Youdin & Lith-
wick 2007), where St is the Stokes number. In the disk
assumed here, however, centimeter-sized particles have
St ⌧ 1 within the first scale height throughout the en-
tire inner disk so DZ,s ' DZ . The correlation time,
vertical di↵usion coe�cient, the mixing time, and the
maximum particle size that can be vertically mixed by
the turbulence obtained for the planet run are summa-
rized in Table 1.
The above calculations relating to particle mixing as-

sume that the SWI generates homogeneous hydrody-
namic turbulence at each radius considered, but as dis-
cussed already the simulations also show strong evidence
for there being coherent large scale vertical motions that
might also contribute to lofting particles away from the
midplane. Particles can only be advected within the
coherent vertical flows if the vertical drag force that
they feel due to the moving gas exceeds the vertical
force of gravity. The maximum particle size for which
this is true can be estimated by equating these forces –
FD = ms⌦2

Kz –, assuming that the vertical gas veloc-
ity is equal to its characteristic value measured in the
simulations, which is ⇠ 10% of the local sound speed.
Evaluating this at R = 0.6, corresponding to 3 au in
physical units, we obtain a maximum particle size of
smax ⇠ 1 cm that can be lofted, consistent with the
value obtained from the calculations above within a fac-
tor of few.

5.2. Implications for the Growth of Large Asteroids

and Terrestrial Planet Embryos

Through a combination of the streaming instabil-
ity producing planetesimals with sizes up to ⇠ few
⇥100 km (Youdin & Goodman 2005; Johansen et al.
2007, 2015) and subsequent pebble accretion onto the
larger planetesimals (Johansen & Lacerda 2010; Ormel
& Klahr 2010; Lambrechts & Johansen 2012; Morbidelli
& Nesvorny 2012), it seems plausible that, at 5 au in a
proto-solar nebula-like gaseous disk, planetesimals can
grow to become 10 Earth-mass (M�) solid cores within
about one million years (Bitsch et al. 2015; Levison et
al. 2015; Morbidelli et al. 2015). This presumably allows
su�cient time for such cores to accrete a substantial
amount of gas to eventually form gas giants, assuming
that another million or so years is required for com-
pletion of the gas accretion phase (e.g., Pollack et al.
1996; Movshovitz et al. 2010), and that protoplanetary
disks around T Tauri stars dissipate in a few million
years (Haisch et al. 2001; Hernández et al. 2007; Mama-
jek 2009). While the details of how gas giant planets
accrete their gaseous envelopes remain uncertain, it is
clear that they must form before protoplanetary disks
lose a significant fraction of their gas content (but see
Tanigawa & Tanaka 2016).
In the Solar System, Jupiter is generally thought to

have been the first planet that finished accretion. By the
time Jupiter has formed, it is commonly assumed that
terrestrial bodies have grown to become Moon or Mars
mass embryos (see review by Dauphas & Chaussidon
2011 and Morbidelli et al. 2012 and references therein).
Planetary embryos then complete their growth during
the gas-free debris phase through collisions with plan-
etesimals and/or other embryos, which takes several tens
to hundreds million years after gas has removed.
More recently, models of the growth of terrestrial

planet embryos and large asteroids through the accretion
of pebbles and/or chondrules that are continuously gen-
erated over multi-Myr time scales have been presented
(Johansen et al. 2015; Levison et al. 2015). In the work
of Johansen et al. (2015) it was shown that the formation
of planetesimals via high resolution streaming instability
simulations leads to the formation of bodies with sizes
up to ⇠ 100 km, and that subsequent chondrule accre-
tion onto these bodies over time scales of ⇠ 3 Myr is
needed to explain the presence of large asteroids such
as Ceres and Vesta in the asteroid belt. Similarly, a
model of planetary embryo growth that involves only
the collisional accretion of planetesimals formed by the
streaming instability was shown to be unable to form
Mars-size embryos within the required time frame, and
that the addition to the model of chondrule accretion
over Myr time scales led to a dramatic increase in the
e�cacy of embryo formation. Levison et al. (2015) have
presented a model in which embryos in the terrestrial
planet region grow through pebble accretion over Myr
time scales, with the pebbles being continuously gen-
erated during this time period, and show that such a
model is able to explain certain features of the terres-
trial planet system. The model introduces the outer
solar system planets at the end of the embryo formation
epoch, and subsequent evolution through giant impacts
leads to final planetary systems that appear to be a good
fit to the basic structure of the inner solar system, in-
cluding a small mass for Mars.
The results of our present work suggest that a Jupiter-

mass planet forming within the first few Myr in a proto-
planetary disk can produce turbulence and vertical stir-
ring of solid particles interior to its orbit. The influence
seems to be quite significant, such that solid particles
with sizes up to several centimeters can be vertically
well mixed. While pebble/chondrule accretion takes ad-
vantage of the large accretion cross section produced by
aerodynamic drag, which can be orders of magnitude
larger than the geometric cross section of the target
planetesimals, for solid particles having a scale height
(Hp) that is larger than the size of the planetesimal Hill
radius (rH) the accretion rate will be reduced by a factor
of rH/Hp (Lambrechts & Johansen 2012). For example,
assuming the planetesimal mass of 1024 g with which
rH/R ⇠ 5.5⇥ 10�4, the accretion rate for particles that
have same scale height as the gas (H/R = Hp/R = 0.05)
will therefore drop by a factor of ⇠ 90. This probably
results in too long a timescale to form planetary embryos
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and large asteroids through pebble accretion within the
typical lifetime of protoplanetary disks. While this ar-
gument considers the decrease in the number density of
pebbles near the midplane only, the larger relative veloc-
ity between pebbles and planetesimals as well as the non-
zero orbital inclination and eccentricity of planetesimals
that might arise in the SWI-driven turbulence can make
the situation even worse. Thus, if pebble accretion is the
dominant process by which terrestrial planet embryos
and large asteroids gain their mass, the requirement for
e�cient pebble accretion may put a time and/or space
constraint on giant planet formation: planetary embryos
have to form before a gas giant forms in the outer disk,
otherwise the strong stirring induced by the SWI will
significantly drop the chondrule/pebble accretion e�-
ciency. It is interesting to note that isotope measure-
ments of Martian meteorites indicate that Mars, as a
stranded planetary embryo (e.g., Chambers & Wetherill
1998), grew rapidly within about 2 Myr after the birth of
the solar system (Dauphas & Pourmand 2011), and then
halted accretion. It is interesting to speculate that the
formation of Jupiter at or close to its current location
may have occurred at around this time, making pebble
accretion onto Mars ine�cient and e↵ectively halting its
growth and that of the large asteroids.
With our initial density profile the disk is optically

thick in the midplane. The main body of the disk there-
fore behaves fully adiabatically, confining the SWI to-
wards the midplane. As the disk evolves the optical
depth of the disk will decrease by accretion of mate-
rial and/or particle growth and settling, and therefore
the disk will behave more isothermally. This will allow
the SWI to operate in broader disk regions in height
and possibly strengthen the spiral arms with less resis-
tance from gas pressure, although the turbulence level
and the significance of vertical mixing have to be fur-
ther examined with relevant disk models. If the level
of turbulence via the SWI remains relatively constant,
regardless of the thermal properties of the disk, or de-
creases over time, this implies that smix will decrease as
the disk loses its mass over time (see Equation 36). In
this case, it is possible that planetesimals and/or plane-
tary embryos resume accreting pebbles during the later
evolution as far as the disk still has some pebbles that
survived rapid migration. On the other hand, when the
disk becomes optically thin the vertical shear instability
and/or the MRI could operate down to the midplane
and provide some turbulence that may limit pebble ac-
cretion e�ciency.
If a giant planet migrates over a significant distance

to reach its final position, as in the “Grand Tack” model
proposed for the early Solar System (e.g., Walsh et al.
2011), the SWI could have a significant e↵ect over a
broader range of disk radii than otherwise, because the
growth timescale of the instability is orders of magnitude
shorter than the migration time scale.
It might be possible that gas giants form as early as

during the time when their host disks still gain mass

from their natal clouds, as recent observation of HL Tau
may suggest (ALMA Partnership et al. 2015). Whether
or not such an early giant planet formation is common
is still an open question. If giant planets form at such
an early time, the disk may be left with a very narrow
window in time to grow terrestrial bodies in the disk if
pebble accretion is the dominant mechanism.

5.3. Dependence of SWI on Planetary Mass

We have focused on the SWI arising from the spiral
waves excited by a giant planet in the inner regions of
a protoplanetary disk in this paper. One may wonder if
there is a mass requirement for triggering the SWI, and
how the strength of the SWI varies with planet mass.
First, given that the instability involves energy from

the spiral waves being transferred into inertial modes, it
is clear that stronger spiral waves will generate higher
amplitudes for unstable inertial modes. In the nonlin-
ear saturated state, we therefore expect that the result-
ing hydrodynamic turbulence will be more vigorous for
larger mass planets.
Second, our general picture of how the instability op-

erates is that a protoplanetary disk hosts the full spec-
trum of inertial modes that are present at low ampli-
tude. When a source of spiral waves (e.g., a planet)
is present, it excites waves with a range of azimuthal
mode numbers and Doppler-shifted frequencies. Then,
the inertial modes that are resonant with spiral waves
with specific azimuthal mode numbers are able to grow
due to the periodic forcing. In the case of a giant, gap
forming planet, we have shown that the dominant spiral
modes that propagate in the inner disk are the m = 2
and m = 3 modes, presumably because these are ex-
cited at ILRs that lie outside of the low density gap
region. As the planet mass is lowered, however, the gap
depth reduces and we expect that higher values of m
will become prominent, with the amplitudes of waves
associated with lower m values decreasing in propor-
tion to the planet mass. The increasing prominence
of the higher m spiral modes may then allow the SWI
to operate in regions closer to the planet because, at
the midplane, the SWI operates in the radial intervals
((m�2)/m)2/3Rp  R  ((m�1)/m)2/3Rp in the inner
disk and in ((m+1)/m)2/3Rp  R  ((m+2)/m)2/3Rp

in the outer disk. Again, these conditions come from the
fact that, as the value of m increases, the synodic period
between orbiting fluid elements and the planet needs to
increase to match the resonance condition with inertial
modes in the disk.
Based on the two points discussed above, we expect

that (1) the strength of SWI-driven turbulence will be
weaker for lower mass planets; and (2) the region where
the instability operates will be narrower and closer to
the planet, as the planet mass decreases to the point
that the m = 2 mode is no longer strong enough to
induce the SWI in the inner disk.
In order to support these two points, we have run

additional simulations with planetary masses of q ⌘
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Mp/M⇤ = 10�3, 5⇥10�4, 3⇥10�4, 10�4, 10�5. For these
runs, we were forced to use a numerical resolution of
(Nr, N✓, N�) = (364, 72, 378) because of the computa-
tional cost. This is a factor of two lower than our ref-
erence model and so thus the growth of the SWI is not
properly captured, although we can measure spiral wave
amplitudes.
The Fourier amplitudes for di↵erent planetary masses

are plotted in Figure 12 as a function of azimuthal mode
number. At both 0.55 < R < 0.65 and 0.25 < R < 0.35,
the Fourier amplitudes are larger for more massive plan-
ets in general. It is therefore reasonable to expect
that more massive planets will produce larger energy
injection rates into the inertial modes, and accordingly
stronger turbulence through the SWI. We see that the
maximum amplitude shifts towards lower degree az-
imuthal modes as q increases, presumably due to non-
linear mode coupling (e.g., Lee 2016) and gap formation
which suppresses the amplitudes of the high-m modes
that are excited close to the planet. This trend is partic-
ularly apparent for q � 3⇥10�4. As the SWI is expected
to operate for m = 2 and m = 3 perturbations at radii
0.55 < R < 0.65 (it can also be excited by the m = 4
mode between 0.63  R/Rp  0.65, but this is only just
contained in the radial range under consideration), and
for m = 2 modes only at radii 0.25 < R < 0.35, we
expect that the SWI operates more strongly with larger
planetary masses that have most power in m = 2 or
m = 3 in these regions (q � 3⇥ 10�4). When q = 10�5,
the Fourier amplitudes are relatively flat for m ' 3�10.
If the SWI can operate for such a low mass planet, then
we might expect that the strength of the outcome will
be much weaker than for larger mass planets, and that
the regions unstable to the instability will be limited to
a narrow radial region around the planetary orbit be-
cause of the weakness of the m = 2 spiral wave. Global
disk calculations performed at high resolution will be
required to confirm or refute these conjectures, and to
fully characterize how the SWI operates as a function of
planet mass.

5.4. Caveats and Future Work

As seen in Figure 11, the ACF of the vertical veloc-
ity does not converge but oscillates around zero with
finite amplitude. This is because the vertical flows de-
veloping from the SWI not only contain repeated growth
and decay of vertical motions, but also display sustained
and coherent oscillations, likely due to the excitation of
longer wavelength inertial waves. Due to this apparently
complex superposition of turbulence and coherent oscil-
lations, the analysis presented in Section 5.1 has to be
viewed with some caution by keeping in mind the uncer-
tainty in estimating the correlation time. Nonetheless, a
factor of a few uncertainty in the correlation time would
not change our conclusions about particle stirring in a
qualitative sense.
At this point, it is probably worthwhile pointing out

that some previous simulation studies, in which grains

Figure 12. The Fourier amplitude |Am| for various az-

imuthal modes at (upper) 0.55 < R < 0.65 and (lower)

0.25 < R < 0.35, taken at t = 100 t
orb

for di↵erent plan-

etary masses q = Mp/M⇤ of (black) 10

�3

, (blue) 5 ⇥ 10

�4

,

(green) 3⇥ 10

�4

, (yellow) 10

�4

, and (red) 10

�5

. Black open

circles are for our reference model with the high numeri-

cal resolution of (Nr, N✓, N�) = (726, 144, 754), whereas all

the other models run with low resolution of (Nr, N✓, N�) =

(364, 72, 378). The arrows indicate the azimuthal mode num-

bers with which perturbing waves are capable of exciting the

SWI at each radius bin.

and pebbles are implemented as Lagrangian particles,
indicate evidence of vertical mixing of solid particles
through the SWI. As a potential example, we note that
in Figure 13 of Zhu et al. (2014), where the authors
placed a 0.65 Jupiter-mass planet around a solar-mass
star, particles a and b – that are about a millimeter and
a centimeter in size, respectively, when the MMSN disk
model and the semi-major axis of 5 au are assumed –
are vertically dispersed in the outer disk (R > 1 in the
figure). In particular, the particle distributions show
some wiggling morphology near the midplane, which is
tempting to explain with the radially alternating verti-
cal flows arising from the SWI. The vertical dispersal of
particles is not seen in the inner disk and we speculate
that this is because of the insu�cient numerical reso-
lution to properly capture the unstable inertial modes
there. They used uniform radial grid cells, with which
one scale height is resolved with only about 5 grid cells
in both radial and vertical directions at R = 0.7, as
opposed to with about 15 grid cells at R = 1.5.
In the future, more quantitative conclusions will be

able to be made from high resolution gas and particle
simulations, where one can obtain the vertical distribu-
tion of solid particles stirred by the SWI, both interior
and exterior to the planet. Furthermore, some of the
questions that we have discussed in this paper such as
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the outcome of the SWI as a function of planet mass,
and the influence that this has on pebble accretion, can
also be addressed in the context of improved disk models
that contain a more sophisticated model of disk thermo-
dynamics. And finally, hydrodynamic simulations com-
bined with radiative transfer calculations can be used
to determine the observational appearance of disks with
planets, and to determine what influence the SWI has
on images formed through scattered light and thermal
emission.

6. CONCLUSION

We have presented inviscid three-dimensional global
hydrodynamic simulations of protoplanetary disks in
which we excite spiral waves either monochromatically
using an imposed external potential or using a full plan-
etary potential. Using monochromatic waves, we first
show that the region of the SWI operating and the prop-
erties of the unstable inertial modes show very good
agreement with the predictions made by matching reso-
nance criteria using simple dispersion relations for spiral
and inertial waves. When a Jupiter-mass planet is added
in the disk, the spiral waves it launches have various
azimuthal components superimposed on the dominant
m = 2 or m = 3 modes, depending on the radial posi-
tion in the disk, and the SWI is found to grow on the
order of the planet orbital time. When it is saturated,
the SWI generates turbulence and radially alternating
vertical flows that have characteristic radial and verti-
cal length scales of about one local pressure scale height
and vertical velocities of order of few tens percent of the
local sound speed. Using the alpha prescription, the as-
sociated vertical di↵usion rate of gas is estimated to be
characterized by ↵di↵ ⇠ (0.2� 1.2)⇥ 10�2 in the range
of radii 0.3Rp  R  0.7Rp, where Rp is the semi-
major axis of the planet. At this rate, solid particles
up to a few centimeters in size can be vertically mixed
within the first pressure scale height. Since protoplan-
etary disks are believed to remain laminar, and thus
induce no or very little particle stirring, as suggested
by recent magnetized wind models (Bai & Stone 2013;

Gressel et al. 2015), the SWI can be the mechanism
controlling the degree of vertical settling of solid parti-
cles in the optically-thick regions of planet-hosting disks
where other hydrodynamic instabilities are not thought
to operate.
While more quantitative results will be obtained with

future high resolution simulations that include particles,
we conjecture that significant stirring of solid particles
through the instability of the spiral waves excited by gi-
ant planets can have an influence on the formation and
growth of large asteroids and terrestrial planet embryos
in the inner disk, if these bodies are actively growing
in the presence of a giant planet (such as Jupiter in
the protosolar nebula). In particular, if growth of these
bodies proceeds mainly through the accretion of chon-
drules/pebbles, then they have to form before a gas giant
forms in the outer disk as the stirring of solid particles
is likely to significantly decrease the chondrule/pebble
accretion e�ciency. Since the properties of the turbu-
lence driven by the SWI are dependent upon the back-
ground thermal structure of the disk as well as the plan-
etary mass, future studies that survey parameter space
at high numerical resolution are needed to further exam-
ine the significance of the instability for protoplanetary
disk evolution and for planet formation.
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