36 research outputs found

    Polaritonic molecular clock for all-optical ultrafast imaging of wavepacket dynamics without probe pulses

    Full text link
    Conventional approaches to probing ultrafast molecular dynamics rely on the use of synchronized laser pulses with a well-defined time delay. Typically, a pump pulse excites a molecular wavepacket. A subsequent probe pulse can then dissociate or ionize the molecule, and measurement of the molecular fragments provides information about where the wavepacket was for each time delay. Here, we propose to exploit the ultrafast nuclear-position-dependent emission obtained due to large light–matter coupling in plasmonic nanocavities to image wavepacket dynamics using only a single pump pulse. We show that the time-resolved emission from the cavity provides information about when the wavepacket passes a given region in nuclear configuration space. This approach can image both cavity-modified dynamics on polaritonic (hybrid light–matter) potentials in the strong light–matter coupling regime and bare-molecule dynamics in the intermediate coupling regime of large Purcell enhancements, and provides a route towards ultrafast molecular spectroscopy with plasmonic nanocavitiesThis work has been funded by the European Research Council grant ERC-2016-STG-714870 and the Spanish Ministry for Science, Innovation, and Universities—AEI grants RTI2018-099737-B-I00, PCI2018-093145 (through the QuantERA program of the European Commission), and CEX2018-000805-M (through the María de Maeztu program for Units of Excellence in R&D

    Planetary Rings

    Full text link
    Planetary rings are the only nearby astrophysical disks, and the only disks that have been investigated by spacecraft. Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 1e-7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close-range and in real-time in planetary rings. We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The main rings of Saturn comprise our system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally-confined arcs. Finally, every known ring system includes a substantial component of diffuse dusty rings. Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of debate; formation scenarios are most plausible in the context of the early solar system, while signs of youthfulness indicate at least that rings have never been static phenomena.Comment: 82 pages, 34 figures. Final revision of general review to be published in "Planets, Stars and Stellar Systems", P. Kalas and L. French (eds.), Springer (http://refworks.springer.com/sss

    The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications

    Get PDF
    The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Primjena i kompozicija individualiziranih zaštitnih elemenata linijske grafike u projektiranju novčanica

    Get PDF
    Proces stvaranja novčanica je dugotrajan i složen, što rezultira kompleksnim rješenjima koja predstavljaju pravo remek djelo grafike. Novčanice su prožete brojnim detaljima i prenose različite informacije koje se analiziraju u teorijskom dijelu rada. Prvotno se postavljaju kriteriji po kojima se izrađuje detaljna analiza velikog broja zaštitnih i konceptualnih elemenata na primjerima novčanica. Time je prikazan okvirni povijesni pregled razvoja novčanica i utjecaji kojima je bio izložen. Analizira se međuovisnost dizajna o sigurnosnim značajkama, te se ispituje razina informiranosti javnosti o zaštitama na novčanicama. Zaključuje se koje metode zaštite su najučinkovitije, te kako šira javnost najčešće provjerava autentičnost novčanica. U eksperimentalnom dijelu rada se na temelju donesenih zaključaka iz teorijskog dijela izrađuje prototip novčanice koja je u najvećoj mjeri prožeta individualiziranim PostScript programskim rješenjima elemenata linijske grafike (rozete, mikrotekst, zaštitne linije, brojevi apoena), a od ostalih zaštita modeliran je individualizirani raster transformacijom matematičkog izraza u PostScript programski kod. Sve ostale zaštite tipične za novčanice simulirane su alatima za rastersku i vektorsku grafiku. U radu se ispituje utjecaj kompozicije zaštitnih elemenata na prepoznavanje autentičnosti novčanica, te efikasnost samih individualiziranih programskih rješenja

    VIS-5D VR Animations: Virtual Hand Functionality

    No full text
    The VIS-5D scientific visualization system has been extended to include an interactive mode controlled by virtual environment devices. This animation is part of a series of live screen captures demonstrating this capability. Educational levels: Undergraduate lower division, Undergraduate upper division, Graduate or professional

    Images of Earth and Space: Supercomputing 96

    No full text
    This animation includes seven visualizations from Goddard Space Flight Center, Jet Propulsion Laboratory, and NASA HPCC Earth and Space Sciences Project investigators. In order of appearance, they are stellar turbulence, 3D colliding black holes, star formation, solar surge, Hurricane Florence, Southern California fly-over, and a running skeleton. Classical music accompanies the visuals. Educational levels: Undergraduate lower division, Undergraduate upper division, Graduate or professional
    corecore