51 research outputs found

    Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Integration of genomic variation with phenotypic information is an effective approach for uncovering genotype-phenotype associations. This requires an accurate identification of the different types of variation in individual genomes.</p> <p>Results</p> <p>We report the integration of the whole genome sequence of a single Holstein Friesian bull with data from single nucleotide polymorphism (SNP) and comparative genomic hybridization (CGH) array technologies to determine a comprehensive spectrum of genomic variation. The performance of resequencing SNP detection was assessed by combining SNPs that were identified to be either in identity by descent (IBD) or in copy number variation (CNV) with results from SNP array genotyping. Coding insertions and deletions (indels) were found to be enriched for size in multiples of 3 and were located near the N- and C-termini of proteins. For larger indels, a combination of split-read and read-pair approaches proved to be complementary in finding different signatures. CNVs were identified on the basis of the depth of sequenced reads, and by using SNP and CGH arrays.</p> <p>Conclusions</p> <p>Our results provide high resolution mapping of diverse classes of genomic variation in an individual bovine genome and demonstrate that structural variation surpasses sequence variation as the main component of genomic variability. Better accuracy of SNP detection was achieved with little loss of sensitivity when algorithms that implemented mapping quality were used. IBD regions were found to be instrumental for calculating resequencing SNP accuracy, while SNP detection within CNVs tended to be less reliable. CNV discovery was affected dramatically by platform resolution and coverage biases. The combined data for this study showed that at a moderate level of sequencing coverage, an ensemble of platforms and tools can be applied together to maximize the accurate detection of sequence and structural variants.</p

    C1q and tumor necrosis factor superfamily: modularity and versatility.

    No full text
    C1q is the target recognition protein of the classical complement pathway and a major connecting link between innate and acquired immunity. As a charge pattern recognition molecule of innate immunity, C1q can engage a broad range of ligands via its globular (gC1q) domain and modulate immune cells, probably via its collagen region. The gC1q signature domain, also found in many non-complement proteins, has a compact jelly-roll beta-sandwich fold similar to that of the multifunctional tumor necrosis factor (TNF) ligand family. The members of this newly designated 'C1q and TNF superfamily' are involved in processes as diverse as host defense, inflammation, apoptosis, autoimmunity, cell differentiation, organogenesis, hibernation and insulin-resistant obesity. This review is an attempt to draw structural and functional parallels between the members of the C1q and TNF superfamily
    corecore