196 research outputs found

    Tumor metabolism, the ketogenic diet and beta-hydroxybutyrate: novel approaches to adjuvant brain tumor therapy

    Get PDF
    Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD). The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate (βHB) in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma

    Biology of primary breast cancer in older women treated by surgery: with correlation with long-term clinical outcome and comparison with their younger counterparts

    Get PDF
    BACKGROUND: As age advances breast cancer appears to change its biological characteristics, however, very limited data are available to define the precise differences between older and younger patients. METHODS: Over 36 years (1973–2009), 1758 older (⩾70 years) women with early operable primary breast cancer were managed in a dedicated clinic. In all, 813 underwent primary surgery and 575 good quality tumour samples were available for biological analysis. The pattern of biomarkers was analysed using indirect immunohistochemistry on tissue microarrays. Comparison was made with a previously characterised series of younger (<70 years) patients. RESULTS: There was high expression of oestrogen receptor (ER), PgR, Bcl2, Muc1, BRCA1 and 2, E-cadherin, luminal cytokeratins, HER3, HER4, MDM2 and 4 and low expression of human epidermal growth factor receptor (HER)-2, Ki67, p53, EGFR and CK17. Oestrogen receptor and axillary stage appeared as independent prognostic factors. Unsupervised partitional clustering showed six biological clusters in older patients, five of which were common in the younger patients, whereas the low ER luminal cluster was distinct in the older series. The luminal phenotype showed better breast cancer-specific survival, whereas basal and HER2-overexpressing tumours were associated with poor outcome. CONCLUSION: Early operable primary breast cancer in older women appears as a distinct biological entity, with existence of a novel cluster. Overall older women showed less aggressive tumour biology and ER appeared as an independent prognostic factor alongside the time-dependent axillary stage. These biological characteristics may explain the differences in clinical outcome and should be considered in making therapeutic decisions

    Functional compensation of glutathione S-transferase M1 (GSTM1) null by another GST superfamily member,GSTM2

    Get PDF
    The gene for glutathione-S-transferase (GST) M1 (GSTM1), a member of the GST-superfamily, is widely studied in cancer risk with regard to the homozygous deletion of the gene (GSTM1 null), leading to a lack of corresponding enzymatic activity. Many of these studies have reported inconsistent findings regarding its association with cancer risk. Therefore, we employed in silico, in vitro, and in vivo approaches to investigate whether the absence of a functional GSTM1 enzyme in a null variant can be compensated for by other family members. Through the in silico approach, we identified maximum structural homology between GSTM1 and GSTM2. Total plasma GST enzymatic activity was similar in recruited individuals, irrespective of their GSTM1 genotype (positive/null). Furthermore, expression profiling using real-time PCR, western blotting, and GSTM2 overexpression following transient knockdown of GSTM1 in HeLa cells confirmed that the absence of GSTM1 activity can be compensated for by the overexpression of GSTM

    3.0 T cardiovascular magnetic resonance in patients treated with coronary stenting for myocardial infarction: evaluation of short term safety and image quality

    Get PDF
    Purpose To evaluate safety and image quality of cardiovascular magnetic resonance (CMR) at 3.0 T in patients with coronary stents after myocardial infarction (MI), in comparison to the clinical standard at 1.5 T. Methods Twenty-five patients (21 men; 55 ± 9 years) with first MI treated with primary stenting, underwent 18 scans at 3.0 T and 18 scans at 1.5 T. Twenty-four scans were performed 4 ± 2 days and 12 scans 125 ± 23 days after MI. Cine (steady-state free precession) and late gadolinium-enhanced (LGE, segmented inversion-recovery gradient echo) images were acquired. Patient safety and image artifacts were evaluated, and in 16 patients stent position was assessed during repeat catheterization. Additionally, image quality was scored from 1 (poor quality) to 4 (excellent quality). Results There were no clinical events within 30 days of CMR at 3.0 T or 1.5 T, and no stent migration occurred. At 3.0 T, image quality of cine studies was clinically useful in all, but not sufficient for quantitative analysis in 44% of the scans, due to stent (6/18 scans), flow (7/18 scans) and/or dark band artifacts (8/18 scans). Image quality of LGE images at 3.0 T was not sufficient for quantitative analysis in 53%, and not clinically useful in 12%. At 1.5 T, all cine and LGE images were quantitatively analyzable. Conclusion 3.0 T is safe in the acute and chronic phase after MI treated with primary stenting. Although cine imaging at 3.0 T is suitable for clinical use, quantitative analysis and LGE imaging is less reliable than at 1.5 T. Further optimization of pulse sequences at 3.0 T is essential

    Delay in diagnosis of tuberculosis in Rawalpindi, Pakistan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Delay in diagnosis and treatment of tuberculosis (TB) may enhance the chances of morbidity and mortality and play a key role in continuous transmission of the bacilli. The objective of this study was to describe health care seeking behavior of suspected TB patients and initial diagnostic work up prior to consultation and diagnosis at National TB Center (NTC).</p> <p>Findings</p> <p>Interviews of 252 sputum smear positive patients were taken from NTC, Rawalpindi. The duration between on-set of symptoms and start of treatment was considered as the total delay and correlated with general characteristics of TB patients. The proportion of males and females were 49.6% and 50.4% with median age of 25 and 24 years respectively. A median delay of 56 days (8 weeks) was observed which was significantly associated with age, cough and fever. More than 50% of the current patients had a history of contact with previously diagnosed TB patients. The majority of patients (63%) visited health care providers within three weeks of appearance of symptoms but only thirty five percent were investigated for TB diagnosis.</p> <p>Conclusion</p> <p>Cough and fever are being ignored as likely symptoms of TB by patients as well as health care providers resulting in delay. Engaging private practitioners through public private mix (PPM) approach for expansion of TB diagnosis and increasing public awareness could be more beneficial to reduce delay.</p

    Kinetic and stoichiometric characterization of anoxic sulfideoxidation by SO-NR mixed cultures from anoxic biotrickling filters.

    Get PDF
    Monitoring the biological activity in biotrickling filters is difficult since it implies estimating biomass concentration and its growth yield, which can hardly be measured in immobilized biomass systems. In this study, the characterization of a sulfide-oxidizing nitrate-reducing biomass obtained from an anoxic biotrickling filter was performed through the application of respirometric and titrimetric techniques. Previously, the biomass was maintained in a continuous stirred tank reactor under steady-state conditions resulting in a growth yield of 0.328±0.045 g VSS/g S. To properly assess biological activity in respirometric tests, abiotic assays were conducted to characterize the stripping of CO2 and sulfide. The global mass transfer coefficient for both processes was estimated. Subsequently, different respirometric tests were performed: (1) to solve the stoichiometry related to the autotrophic denitrification of sulfide using either nitrate or nitrite as electron acceptors, (2) to evaluate the inhibition caused by nitrite and sulfide on sulfide oxidation, and (3) to propose, calibrate, and validate a kinetic model considering both electron acceptors in the overall anoxic biodesulfurization process. The kinetic model considered a Haldane-type equation to describe sulfide and nitrite inhibitions, a non-competitive inhibition to reflect the effect of sulfide on the elemental sulfur oxidation besides single-step denitrification since no nitrite was produced during the biological assays

    Ecological Determinants of Highly Pathogenic Avian Influenza (H5N1) Outbreaks in Bangladesh

    Get PDF
    BACKGROUND: The agro-ecology and poultry husbandry of the south Asian and south-east Asian countries share common features, however, with noticeable differences. Hence, the ecological determinants associated with risk of highly pathogenic avian influenza (HPAI-H5N1) outbreaks are expected to differ between Bangladesh and e.g., Thailand and Vietnam. The primary aim of the current study was to establish ecological determinants associated with the risk of HPAI-H5N1 outbreaks at subdistrict level in Bangladesh. The secondary aim was to explore the performance of two different statistical modeling approaches for unmeasured spatially correlated variation. METHODOLOGY/PRINCIPAL FINDINGS: An ecological study at subdistrict level in Bangladesh was performed with 138 subdistricts with HPAI-H5N1 outbreaks during 2007-2008, and 326 subdistricts with no outbreaks. The association between ecological determinants and HPAI-H5N1 outbreaks was examined using a generalized linear mixed model. Spatial clustering of the ecological data was modeled using 1) an intrinsic conditional autoregressive (ICAR) model at subdistrict level considering their first order neighbors, and 2) a multilevel (ML) model with subdistricts nested within districts. Ecological determinants significantly associated with risk of HPAI-H5N1 outbreaks at subdistrict level were migratory birds' staging areas, river network, household density, literacy rate, poultry density, live bird markets, and highway network. Predictive risk maps were derived based on the resulting models. The resulting models indicate that the ML model absorbed some of the covariate effect of the ICAR model because of the neighbor structure implied in the two different models. CONCLUSIONS/SIGNIFICANCE: The study identified a new set of ecological determinants related to river networks, migratory birds' staging areas and literacy rate in addition to already known risk factors, and clarified that the generalized concept of free grazing duck and duck-rice cultivation interacted ecology are not significant determinants for Bangladesh. These findings will refine current understanding of the HPAI-H5N1 epidemiology in Bangladesh

    Diverse Hematological Malignancies Including Hodgkin-Like Lymphomas Develop in Chimeric MHC Class II Transgenic Mice

    Get PDF
    A chimeric HLA-DR4-H2-E (DR4) homozygous transgenic mouse line spontaneously develops diverse hematological malignancies with high frequency (70%). The majority of malignancies were distributed equally between T and B cell neoplasms and included lymphoblastic T cell lymphoma (LTCL), lymphoblastic B cell lymphoma (LBCL), diffuse large B cell lymphoma (DLBCL), the histiocyte/T cell rich variant of DLBCL (DLBCL-HA/T cell rich DLBCL), splenic marginal zone lymphoma (SMZL), follicular B cell lymphoma (FBL) and plasmacytoma (PCT). Most of these neoplasms were highly similar to human diseases. Also, some non-lymphoid malignancies such as acute myeloid leukemia (AML) and histiocytic sarcoma were found. Interestingly, composite lymphomas, including Hodgkin-like lymphomas, were also detected that had CD30+ Hodgkin/Reed-Sternberg (H/RS)-like cells, representing a tumor type not previously described in mice. Analysis of microdissected H/RS-like cells revealed their origin as germinal center B cells bearing somatic hypermutations and, in some instances, crippled mutations, as described for human Hodgkin lymphoma (HL). Transgene integration in an oncogene was excluded as an exclusive driving force of tumorigenesis and age-related lymphoma development suggests a multi-step process. Thus, this DR4 line is a useful model to investigate common molecular mechanisms that may contribute to important neoplastic diseases in man

    Uncharted waters: rare and unclassified cardiomyopathies characterized on cardiac magnetic resonance imaging

    Get PDF
    Cardiac magnetic resonance imaging (CMR) has undergone considerable technology advances in recent years, so that it is now entering into mainstream cardiac imaging practice. In particular, CMR is proving to be a valuable imaging tool in the detection, morphological assessment and functional assessment of cardiomyopathies. Although our understanding of this broad group of heart disorders continues to expand, it is an evolving group of entities, with the rarer cardiomyopathies remaining poorly understood or even unclassified. In this review, we describe the clinical and pathophysiological aspects of several of the rare/unclassified cardiomyopathies and their appearance on CMR

    Genetic Analysis of HIV-1 Subtypes in Nairobi, Kenya

    Get PDF
    Background: Genetic analysis of a viral infection helps in following its spread in a given population, in tracking the routes of infection and, where applicable, in vaccine design. Additionally, sequence analysis of the viral genome provides information about patterns of genetic divergence that may have occurred during viral evolution. Objective: In this study we have analyzed the subtypes of Human Immunodeficiency Virus -1 (HIV-1) circulating in a diverse sample population of Nairobi, Kenya. Methodology: 69 blood samples were collected from a diverse subject population attending the Aga Khan University Hospital in Nairobi, Kenya. Total DNA was extracted from peripheral blood mononuclear cells (PBMCs), and used in a Polymerase Chain Reaction (PCR) to amplify the HIV gag gene. The PCR amplimers were partially sequenced, and alignment and phylogenetic analysis of these sequences was performed using the Los Alamos HIV Database. Results: Blood samples from 69 HIV-1 infected subjects from varying ethnic backgrounds were analyzed. Sequence alignment and phylogenetic analysis showed 39 isolates to be subtype A, 13 subtype D, 7 subtype C, 3 subtype AD and CRF01_AE, 2 subtype G and 1 subtype AC and 1 AG. Deeper phylogenetic analysis revealed HIV subtype A sequences to be highly divergent as compared to subtypes D and C. Conclusion: Our analysis indicates that HIV-1 subtypes in the Nairobi province of Kenya are dominated by a genetically diverse clade A. Additionally, the prevalence of highly divergent, complex subtypes, intersubtypes, and the recombinant forms indicates viral mixing in Kenyan population, possibly as a result of dual infections
    corecore