424 research outputs found

    MIRO: A robot “Mammal” with a biomimetic brain-based control system

    Get PDF
    We describe the design of a novel commercial biomimetic brain-based robot, MIRO, developed as a prototype robot companion. The MIRO robot is animal-like in several aspects of its appearance, however, it is also biomimetic in a more significant way, in that its control architecture mimics some of the key principles underlying the design of the mammalian brain as revealed by neuroscience. Specifically, MIRO builds on decades of previous work in developing robots with brain-based control systems using a layered control architecture alongside centralized mechanisms for integration and action selection. MIRO’s control system operates across three core processors, P1-P3, that mimic aspects of spinal cord, brainstem, and forebrain functionality respectively. Whilst designed as a versatile prototype for next generation companion robots, MIRO also provides developers and researchers with a new platform for investigating the potential advantages of brain-based control

    Histopathological cutaneous alterations in systemic sclerosis: a clinicopathological study

    Get PDF
    Introduction: The aims of the present study were to identify histopathological parameters which are linked to local clinical skin disease at two distinct anatomical sites in systemic sclerosis (SSc) patients with skin involvement (limited cutaneous systemic sclerosis (lcSSc) or diffuse cutaneous systemic sclerosis (dcSSc)) and to determine the sensitivity of SSc specific histological alterations, focusing on SSc patients without clinical skin involvement (limited SSc (lSSc)). Methods: Histopathological alterations were systematically scored in skin biopsies of 53 consecutive SSc patients (dorsal forearm and upper inner arm) and 18 controls (upper inner arm). Clinical skin involvement was evaluated using the modified Rodnan skin score. In patients with lcSSc or dcSSc, associations of histopathological parameters with local clinical skin involvement were determined by generalised estimation equation modelling. Results: The hyalinised collagen score, the myofibroblast score, the mean epidermal thickness, the mononuclear cellular infiltration and the frequency of focal exocytosis differed significantly between biopsies with and without local clinical skin involvement. Except for mononuclear cellular infiltration, all of the continuous parameters correlated with the local clinical skin score at the dorsal forearm. Parakeratosis, myofibroblasts and intima proliferation were present in a minority of the SSc biopsies, but not in controls. No differences were found between lSSc and controls. Conclusions: Several histopathological parameters are linked to local clinical skin disease. SSc-specific histological alterations have a low diagnostic sensitivity

    Identification of Molecular Pathologies Sufficient to Cause Neuropathic Excitability in Primary Somatosensory Afferents Using Dynamical Systems Theory

    Get PDF
    Pain caused by nerve injury (i.e. neuropathic pain) is associated with development of neuronal hyperexcitability at several points along the pain pathway. Within primary afferents, numerous injury-induced changes have been identified but it remains unclear which molecular changes are necessary and sufficient to explain cellular hyperexcitability. To investigate this, we built computational models that reproduce the switch from a normal spiking pattern characterized by a single spike at the onset of depolarization to a neuropathic one characterized by repetitive spiking throughout depolarization. Parameter changes that were sufficient to switch the spiking pattern also enabled membrane potential oscillations and bursting, suggesting that all three pathological changes are mechanistically linked. Dynamical analysis confirmed this prediction by showing that excitability changes co-develop when the nonlinear mechanism responsible for spike initiation switches from a quasi-separatrix-crossing to a subcritical Hopf bifurcation. This switch stems from biophysical changes that bias competition between oppositely directed fast- and slow-activating conductances operating at subthreshold potentials. Competition between activation and inactivation of a single conductance can be similarly biased with equivalent consequences for excitability. “Bias” can arise from a multitude of molecular changes occurring alone or in combination; in the latter case, changes can add or offset one another. Thus, our results identify pathological change in the nonlinear interaction between processes affecting spike initiation as the critical determinant of how simple injury-induced changes at the molecular level manifest complex excitability changes at the cellular level. We demonstrate that multiple distinct molecular changes are sufficient to produce neuropathic changes in excitability; however, given that nerve injury elicits numerous molecular changes that may be individually sufficient to alter spike initiation, our results argue that no single molecular change is necessary to produce neuropathic excitability. This deeper understanding of degenerate causal relationships has important implications for how we understand and treat neuropathic pain

    The Urban Environment and Childhood Asthma (URECA) birth cohort study: design, methods, and study population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence and morbidity of wheezing illnesses and childhood asthma is especially high in poor urban areas. This paper describes the study design, methods, and population of the Urban Environment and Childhood Asthma (URECA) study, which was established to investigate the immunologic causes of asthma among inner-city children.</p> <p>Methods and Results</p> <p>URECA is an observational prospective study that enrolled pregnant women in central urban areas of Baltimore, Boston, New York City, and St. Louis and is following their offspring from birth through age 7 years. The birth cohort consists of 560 inner-city children who have at least one parent with an allergic disease or asthma, and all families live in areas in which at least 20% of the population has incomes below the poverty line. In addition, 49 inner-city children with no parental history of allergies or asthma were enrolled. The primary hypothesis is that specific urban exposures in early life promote a unique pattern of immune development (impaired antiviral and increased Th2 responses) that increases the risk of recurrent wheezing and allergic sensitization in early childhood, and of asthma by age 7 years. To track immune development, cytokine responses of blood mononuclear cells stimulated <it>ex vivo </it>are measured at birth and then annually. Environmental assessments include allergen and endotoxin levels in house dust, pre- and postnatal maternal stress, and indoor air nicotine and nitrogen dioxide. Nasal mucous samples are collected from the children during respiratory illnesses and analyzed for respiratory viruses. The complex interactions between environmental exposures and immune development will be assessed with respect to recurrent wheeze at age 3 years and asthma at age 7 years.</p> <p>Conclusion</p> <p>The overall goal of the URECA study is to develop a better understanding of how specific urban exposures affect immune development to promote wheezing illnesses and asthma.</p

    Cyclical changes in seroprevalence of leptospirosis in California sea lions: endemic and epidemic disease in one host species?

    Get PDF
    BackgroundLeptospirosis is a zoonotic disease infecting a broad range of mammalian hosts, and is re-emerging globally. California sea lions (Zalophus californianus) have experienced recurrent outbreaks of leptospirosis since 1970, but it is unknown whether the pathogen persists in the sea lion population or is introduced repeatedly from external reservoirs.MethodsWe analyzed serum samples collected over an 11-year period from 1344 California sea lions that stranded alive on the California coast, using the microscopic agglutination test (MAT) for antibodies to Leptospira interrogans serovar Pomona. We evaluated seroprevalence among yearlings as a measure of incidence in the population, and characterized antibody persistence times based on temporal changes in the distribution of titer scores. We conducted multinomial logistic regression to determine individual risk factors for seropositivity with high and low titers.ResultsThe serosurvey revealed cyclical patterns in seroprevalence to L. interrogans serovar Pomona, with 4-5 year periodicity and peak seroprevalence above 50%. Seroprevalence in yearling sea lions was an accurate index of exposure among all age classses, and indicated on-going exposure to leptospires in non-outbreak years. Analysis of titer decay rates showed that some individuals probably maintain high titers for more than a year following exposure.ConclusionThis study presents results of an unprecedented long-term serosurveillance program in marine mammals. Our results suggest that leptospirosis is endemic in California sea lions, but also causes periodic epidemics of acute disease. The findings call into question the classical dichotomy between maintenance hosts of leptospirosis, which experience chronic but largely asymptomatic infections, and accidental hosts, which suffer acute illness or death as a result of disease spillover from reservoir species

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Polymorphism of the Fractalkine Receptor CX3CR1 and Systemic Sclerosis-associated Pulmonary Arterial Hypertension

    Get PDF
    Fractalkine (FKN) and its receptor CX3CR1 are critical mediators in the vascular and tissue damage of several chronic diseases, including systemic sclerosis (SSc) and pulmonary arterial hypertension (PAH). Interestingly, the V249I and T280M genetic polymorphisms influence CX3CR1 expression and function. We investigated whether these polymorphisms are associated with PAH secondary to SSc. CX3CR1 genotypes were analyzed by PCR and sequencing in 76 patients with limited SSc and 204 healthy controls. PAH was defined by colorDoppler echocardiography. Homozygosity for 249II as well as the combined presence of 249II and 280MM were significantly more frequent in patients with SSc compared to controls (17 vs 6%, p = 0.0034 and 5 vs 1%, p = 0.0027, respectively). The 249I and 280M alleles were associated with PAH (odd ratio [OR] 2.2, 95% confidence interval [CI] 1.01-4.75, p = 0.028 and OR 7.37, 95%CI: 2.45-24.60, p = 0.0001, respectively). In conclusion, the increased frequencies of 249I and 280M CX3CR1 alleles in a subgroup of patients with SSc-associated PAH suggest a role for the fractalkine system in the pathogenesis of this condition. Further, the 249I allele might be associated with susceptibility to SSc

    A prospective study of decline in fat free mass and skeletal muscle strength in chronic obstructive pulmonary disease

    Get PDF
    BACKGROUND: Skeletal muscle depletion is an important complication of chronic obstructive pulmonary disease (COPD) but little prospective data exists about the rate at which it occurs and the factors that promote its development. We therefore prospectively investigated the impact of disease severity, exacerbation frequency and treatment with corticosteroids on change in body composition and maximum isometric quadriceps strength (QMVC) over one year. METHODS: 64 patients with stable COPD (FEV(1 )mean (SD) 35.8(18.4) %predicted) were recruited from clinic and studied on two occasions one year apart. Fat free mass was determined using bioelectrical impedance analysis and a disease specific regression equation. RESULTS: QMVC fell from 34.8(1.5) kg to 33.3(1.5) kg (p = 0.04). The decline in quadriceps strength was greatest in those with the highest strength at baseline (R -0.28 p = 0.02) and was not correlated with lung function, exacerbation frequency or steroid treatment. Decline in fat free mass was similarly higher in those with largest FFM at baseline (R = -0.31 p = 0.01) but was more strongly correlated with greater gas trapping (R = -0.4 p = 0.001). Patients with frequent exacerbations (>1 per year) (n = 36) experienced a greater decline in fat free mass compared to infrequent exacerbators (n = 28) -1.3(3.7)kg vs. +1.2(3.1)kg (p = 0.005), as did patients on maintenance oral steroids (n = 8) -2.8(3.3) kg vs. +0.2(3.5) kg (p = 0.024) whereas in those who stopped smoking (n = 7) fat free mass increased; +2.7(3.1) kg vs. -0.51(3.5) kg (p = 0.026). CONCLUSION: Decline in fat free mass in COPD is associated with worse lung function, continued cigarette consumption and frequent exacerbations. Factors predicting progression of quadriceps weakness could not be identified from the present cohort
    corecore