33 research outputs found
Physics of Neutron Star Crusts
The physics of neutron star crusts is vast, involving many different research
fields, from nuclear and condensed matter physics to general relativity. This
review summarizes the progress, which has been achieved over the last few
years, in modeling neutron star crusts, both at the microscopic and macroscopic
levels. The confrontation of these theoretical models with observations is also
briefly discussed.Comment: 182 pages, published version available at
<http://www.livingreviews.org/lrr-2008-10
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
Cancer recurrence times from a branching process model
As cancer advances, cells often spread from the primary tumor to other parts
of the body and form metastases. This is the main cause of cancer related
mortality. Here we investigate a conceptually simple model of metastasis
formation where metastatic lesions are initiated at a rate which depends on the
size of the primary tumor. The evolution of each metastasis is described as an
independent branching process. We assume that the primary tumor is resected at
a given size and study the earliest time at which any metastasis reaches a
minimal detectable size. The parameters of our model are estimated
independently for breast, colorectal, headneck, lung and prostate cancers. We
use these estimates to compare predictions from our model with values reported
in clinical literature. For some cancer types, we find a remarkably wide range
of resection sizes such that metastases are very likely to be present, but none
of them are detectable. Our model predicts that only very early resections can
prevent recurrence, and that small delays in the time of surgery can
significantly increase the recurrence probability.Comment: 26 pages, 9 figures, 4 table
Hormonal influence on antimicrobial peptide synthesis by fat body cells of a blowfly, Calliphora vicina R.-D. (Diptera, Calliphoridae)
Molecular and phytochemical systematics of the subtribe Hypochaeridinae (Asteraceae, Cichorieae)
Real-time observation of valence electron motion
The superposition of quantum states drives motion on the atomic and subatomic scales, with the energy spacing of the states dictating the speed of the motion. In the case of electrons residing in the outer (valence) shells of atoms and molecules which are separated by electronvolt energies, this means that valence electron motion occurs on a subfemtosecond to few-femtosecond timescale (1 fs = 10(-15) s). In the absence of complete measurements, the motion can be characterized in terms of a complex quantity, the density matrix. Here we report an attosecond pump-probe measurement of the density matrix of valence electrons in atomic krypton ions. We generate the ions with a controlled few-cycle laser field and then probe them through the spectrally resolved absorption of an attosecond extreme-ultraviolet pulse, which allows us to observe in real time the subfemtosecond motion of valence electrons over a multifemtosecond time span. We are able to completely characterize the quantum mechanical electron motion and determine its degree of coherence in the specimen of the ensemble. Although the present study uses a simple, prototypical open system, attosecond transient absorption spectroscopy should be applicable to molecules and solid-state materials to reveal the elementary electron motions that control physical, chemical and biological properties and processes
