269 research outputs found
Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles
We revise the bound from the supernova SN1987A on the coupling of ultralight
axion-like particles (ALPs) to photons. In a core-collapse supernova, ALPs
would be emitted via the Primakoff process, and eventually convert into gamma
rays in the magnetic field of the Milky Way. The lack of a gamma-ray signal in
the GRS instrument of the SMM satellite in coincidence with the observation of
the neutrinos emitted from SN1987A therefore provides a strong bound on their
coupling to photons. Due to the large uncertainty associated with the current
bound, we revise this argument, based on state-of-the-art physical inputs both
for the supernova models and for the Milky-Way magnetic field. Furthermore, we
provide major amendments, such as the consistent treatment of
nucleon-degeneracy effects and of the reduction of the nuclear masses in the
hot and dense nuclear medium of the supernova. With these improvements, we
obtain a new upper limit on the photon-ALP coupling: g_{a\gamma} < 5.3 x
10^{-12} GeV^{-1}, for m_a < 4.4 x 10^{-10} eV, and we also give its dependence
at larger ALP masses. Moreover, we discuss how much the Fermi-LAT satellite
experiment could improve this bound, should a close-enough supernova explode in
the near future.Comment: Accepted for publication in JCAP (December 22nd, 2014
Potential for Supernova Neutrino Detection in MiniBooNE
The MiniBooNE detector at Fermilab is designed to search for oscillation appearance at and to make a
decisive test of the LSND signal. The main detector (inside a veto shield) is a
spherical volume containing 0.680 ktons of mineral oil. This inner volume,
viewed by 1280 phototubes, is primarily a \v{C}erenkov medium, as the
scintillation yield is low. The entire detector is under a 3 m earth
overburden. Though the detector is not optimized for low-energy (tens of MeV)
events, and the cosmic-ray muon rate is high (10 kHz), we show that MiniBooNE
can function as a useful supernova neutrino detector. Simple trigger-level cuts
can greatly reduce the backgrounds due to cosmic-ray muons. For a canonical
Galactic supernova at 10 kpc, about 190 supernova
events would be detected. By adding MiniBooNE to the international network of
supernova detectors, the possibility of a supernova being missed would be
reduced. Additionally, the paths of the supernova neutrinos through Earth will
be different for MiniBooNE and other detectors, thus allowing tests of
matter-affected mixing effects on the neutrino signal.Comment: Added references, version to appear in PR
Исследование уровня шума центробежных нагнетателей и их трубопроводов обвязки на компрессорных станциях
The questions on how to reduce noise centrifugal compressors and pipelines piping at compressor stations.В статье рассмотрены вопросы о путях снижения уровня шума центробежных нагнетателей и их трубопроводов обвязки на компрессорных станциях
Background Dependent Lorentz Violation: Natural Solutions to the Theoretical Challenges of the OPERA Experiment
To explain both the OPERA experiment and all the known phenomenological
constraints/observations on Lorentz violation, the Background Dependent Lorentz
Violation (BDLV) has been proposed. We study the BDLV in a model independent
way, and conjecture that there may exist a "Dream Special Relativity Theory",
where all the Standard Model (SM) particles can be subluminal due to the
background effects. Assuming that the Lorentz violation on the Earth is much
larger than those on the interstellar scale, we automatically escape all the
astrophysical constraints on Lorentz violation. For the BDLV from the effective
field theory, we present a simple model and discuss the possible solutions to
the theoretical challenges of the OPERA experiment such as the Bremsstrahlung
effects for muon neutrinos and the pion decays. Also, we address the Lorentz
violation constraints from the LEP and KamLAMD experiments. For the BDLV from
the Type IIB string theory with D3-branes and D7-branes, we point out that the
D3-branes are flavour blind, and all the SM particles are the conventional
particles as in the traditional SM when they do not interact with the
D3-branes. Thus, we not only can naturally avoid all the known phenomenological
constraints on Lorentz violation, but also can naturally explain all the
theoretical challenges. Interestingly, the energy dependent photon velocities
may be tested at the experiments.Comment: RevTex4, 14 pages, minor corrections, references adde
Discrete diffusion in multistage mixing of dough with anisotropic internal structure
Dough making is a very critical stage of bread baking, largely, due to complex processes taking place thereupon. Key issues, undoubtedly, include a uniform distribution of liquid components over a generally anisotropic structure of the dough. Most solutions to the problem of uniform distribution of non-Newtonian liquids – protein-fat components of the dough, are based on the idea that the internal structure of particles is isotropic. However, it is not true in all cases. Some researchers have proved that distribution of fat components of different layers varies while the matter is being formed. A reason for it is a certain orientation and denser packing of protein molecules in the layers closer to kneading blades, which, naturally, means that the internal structure of different layers varies, too
Multimessenger astronomy with the Einstein Telescope
Gravitational waves (GWs) are expected to play a crucial role in the
development of multimessenger astrophysics. The combination of GW observations
with other astrophysical triggers, such as from gamma-ray and X-ray satellites,
optical/radio telescopes, and neutrino detectors allows us to decipher science
that would otherwise be inaccessible. In this paper, we provide a broad review
from the multimessenger perspective of the science reach offered by the third
generation interferometric GW detectors and by the Einstein Telescope (ET) in
particular. We focus on cosmic transients, and base our estimates on the
results obtained by ET's predecessors GEO, LIGO, and Virgo.Comment: 26 pages. 3 figures. Special issue of GRG on the Einstein Telescope.
Minor corrections include
Small-angle fragmentation of carbon ions at 0.6 GeV/n: a comparison with models of ion-ion interactions
Momentum distributions of hydrogen and helium isotopes from 12C fragmentation at 3.5° were measured at 0.6 GeV/nucleon in the FRAGM experiment at ITEP TWA heavy ion accelerator. The fragments were selected by correlated time of flight and dE/dx measurements with a magnetic spectrometer with scintillation counters. The main attention was drawn to the high momentum region where the fragment velocity exceeds the velocity of the projectile nucleus. The momentum spectra of fragments span the region of the fragmentation peak as well as the cumulative region. The differential cross sections cover six orders of magnitude. The distributions measured are compared to the predictions of three ion-ion interaction models: BC, QMD and LAQGSM03.03. The kinetic energy spectra of fragments in the projectile rest frame have an exponential shape with two temperatures, being defined by their slope parameters
Search for charginos in e+e- interactions at sqrt(s) = 189 GeV
An update of the searches for charginos and gravitinos is presented, based on
a data sample corresponding to the 158 pb^{-1} recorded by the DELPHI detector
in 1998, at a centre-of-mass energy of 189 GeV. No evidence for a signal was
found. The lower mass limits are 4-5 GeV/c^2 higher than those obtained at a
centre-of-mass energy of 183 GeV. The (\mu,M_2) MSSM domain excluded by
combining the chargino searches with neutralino searches at the Z resonance
implies a limit on the mass of the lightest neutralino which, for a heavy
sneutrino, is constrained to be above 31.0 GeV/c^2 for tan(beta) \geq 1.Comment: 22 pages, 8 figure
Updated precision measurement of the average lifetime of B hadrons
The measurement of the average lifetime of B hadrons using inclusively reconstructed secondary vertices has been updated using both an improved processing of previous data and additional statistics from new data. This has reduced the statistical and systematic uncertainties and gives \tau_{\mathrm{B}} = 1.582 \pm 0.011\ \mathrm{(stat.)} \pm 0.027\ \mathrm{(syst.)}\ \mathrm{ps.} Combining this result with the previous result based on charged particle impact parameter distributions yields \tau_{\mathrm{B}} = 1.575 \pm 0.010\ \mathrm{(stat.)} \pm 0.026\ \mathrm{(syst.)}\ \mathrm{ps.
SN1987A and the properties of neutrino burst
We reanalyze the neutrino events from SN1987A in IMB and Kamiokande-II (KII)
detectors, and compare them with the expectations from simple theoretical
models of the neutrino emission. In both detectors the angular distributions
are peaked in the forward direction, and the average cosines are 2 sigma above
the expected values. Furthermore, the average energy in KII is low if compared
with the expectations; but, as we show, the assumption that a few (probably
one) events at KII have been caused by elastic scattering is not in contrast
with the 'standard' picture of the collapse and yields a more satisfactory
distributions in angle and (marginally) in energy. The observations give useful
information on the astrophysical parameters of the collapse: in our
evaluations, the mean energy of electron antineutrinos is =12-16 MeV, the
total energy radiated around (2-3)*1.E53 erg, and there is a hint for a
relatively large radiation of non-electronic neutrino species. These properties
of the neutrino burst are not in disagreement with those suggested by the
current theoretical paradigm, but the data leave wide space to non-standard
pictures, especially when neutrino oscillations are included.Comment: 14 pages, 5 figure
- …
