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Abstract. Dough making is a very critical stage of bread baking, largely, 

due to complex processes taking place thereupon. Key issues, undoubtedly, 

include a uniform distribution of liquid components over a generally 

anisotropic structure of the dough. Most solutions to the problem of 

uniform distribution of non-Newtonian liquids – protein-fat components of 

the dough, are based on the idea that the internal structure of particles is 

isotropic. However, it is not true in all cases. Some researchers have 

proved that distribution of fat components of different layers varies while 

the matter is being formed. A reason for it is a certain orientation and 

denser packing of protein molecules in the layers closer to kneading 

blades, which, naturally, means that the internal structure of different 

layers varies, too. 

1 Introduction 

In case of a stepwise depressurization when making aerated dough, for instance, a cellular 

structure of the outer layers of particles is destroyed by liquefied gases [1–4], so that their 

internal structure becomes obviously anisotropic. 

Some studies [5-7] report that this multi-stage dough-kneading process is very effective, 

especially for confectionery products, where dough is deliberately saturated with air 

bubbles. 

Let us indentify a mathematical model of discrete diffusion from spherical particles 

(corresponding to preparation of air bubbles) during a multi-stage dough-kneading under 

conditions of varying degree of destruction of the cellular structure; the particle has two 

zones with different diffusion coefficients: a core of undestroyed cells with diffusion 

coefficient D1 and a surface layer made of destroyed cells with a larger diffusion 

coefficient D2. The matter repeatedly outflows from such two-zone particle (multi-stage 

kneading). 
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2 Materials and methods 

Mathematically, the problem can formulated as the equation describing non-stationary 

diffusion 

 

𝜕𝐶𝑖𝑗
(𝑘)

𝜕𝜏
= 𝐷𝑘 (

𝜕2𝐶𝑖𝑗
(𝑘)

𝜕𝜏
+

2

𝑟

𝜕𝐶𝑖𝑗
(𝑘)

𝜕𝑟
)                                                                     (1) 

               (𝜏 > 0, 𝑅𝑘−1 < 𝑟𝑘 < 𝑅𝑘, 𝑅0 = 0) 
 

under the boundary conditions:  

 

𝐶𝑖𝑗
(𝑘)(𝑟, 𝜏0) = 𝑓(𝑟); 𝑎𝑡 𝜏 = 0 𝑓(𝑟) = 𝐶0 = 𝑐𝑜𝑛𝑠𝑡 ;                                  (2) 

 

𝐶𝑖𝑗
(1)(𝑅1, 𝜏) = 𝐶𝑖𝑗

(2)(𝑅1, 𝜏)                                         (3) 

 

−𝐷1
𝐶𝑖𝑗
(1)(𝑅1,𝜏)

𝜕𝑟
= −𝐷2

𝐶𝑖𝑗
(2)(𝑅1,𝜏)

𝜕𝑟
                                              (4) 

 

𝜕𝐶𝑖𝑗
(1)
(0,𝜏)

𝜕𝑟
= 0;  C𝑖𝑗

(1)(0, 𝜏) < ∞                                      (5) 

 

𝐶𝑖1
(2)(𝑅2, 𝜏) = 𝐶𝑛 = 𝑐𝑜𝑛𝑠𝑡                                                 (6) 

 

𝜕𝐶𝑖2
(2)
(𝑅2,𝜏)

𝜕𝑟
= 0;  𝐶0 > 𝐶𝑛 .                                           (7) 

 

Condition (2) is the initial condition that determines distribution of concentration of the 

mixed matter at the initial moment of the corresponding period. 

Equations (3) and (4) are mathematical expressions of the boundary condition of the 4th 

kind, which determines equalities of concentrations and mass flows in case of a good mass-

transfer contact between the core and the surface layer. 

Expression (5) is a condition of symmetry and physical limitation of distribution of the mixed 

matter. 

Conditions (6) and (7) are mathematical expressions for interaction of particles (air) 

with the environment in the first and second periods of the process. We will not lose 

generality of the problem statement even if Cn=0. 

Therefore, formulation of this complex problem consists of several separate problems, 

each having an independent solution 10, 35, 36. However, in this case, the problem seems 

much more complicated, as we consider diffusion of the matter in a two-layer particle with 

alternating continuous / discrete inflow of matter. 

Applying methods of mathematical physics, we get a solution of the boundary value 

problem (1) - (7) which can be recorded, for a regular stage of the process and for average 

concentration values, as [8]:  

 

                        
𝐶0−𝐶𝑖𝑗

(𝑘)

𝐶0
= 1 + (−1)𝑗𝑀𝑖𝑗

(𝑘)
 ,                                  (8) 

 

where, 
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𝑀𝑖𝑗
1 = 3𝑘𝐷

𝑚𝑘𝑅
𝑛+1𝛾11

𝑆 𝛾𝑡(sin 𝜌11)
2−𝑗(sin 𝛾1𝑗 − 𝛾1𝑗 cos 𝛾1𝑗)

1 − 𝛾2

𝛹2(𝑘𝑅)
[
2𝛹2(𝑘𝑅) sin 𝛾11
(1 − 𝛾2)𝜑11

]

𝑖

∗   

∗ [
2 sin 𝛾11 sin 𝛾12
(1 − 𝛾2)𝜑12

]
𝑛

exp [−(𝛾1𝑗
2 𝐹𝑜

+∑∑𝛾1𝑗
2 𝐹𝑜𝑖𝑗

2

𝑗=1

− 𝛾1𝑗
2 𝐹𝑜𝑖𝑗

𝐽

𝑖=1

)]                               ; 

 

𝑀𝑖𝑗
2 =

{
 
 

 
 sin 𝛾11 (sin 𝜌11 + √𝑘𝐷 𝛾11 cos 𝜌11 −√𝑘𝐷𝛾11𝑘𝑅) 

√𝑘𝐷(1 − 𝑘𝑅
3)𝛾11 sin 𝜌11(sin 𝛾11 − 𝛾11 cos 𝛾11)

𝑀11
(1)
   𝑎𝑡 𝑖 = 𝑗 = 1

√𝑘𝐷

1 − 𝑘𝑅
3𝑀𝑖𝑗

(1)
  𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠 𝑖 и 𝑗                                                                  

      ;         

 

                      𝑠 = 𝑗 − 3 + (𝑘 − 1)(2 − 𝑗);𝑚 =
1

2
[𝑖 + (−1)𝑗 − (𝑘 − 1)];                 

 

                      t = {
𝑖 + (−1)𝑗  𝑎𝑡 𝑖 = 1; 𝑛 = 𝑖 + 𝑗 − 2 

𝑖 + (−1)𝑗 + 2 𝑎𝑡 𝑖 > 1;  𝛾 =
𝛾11

𝛾12
   
  .  

 

Where γ11 is the first positive root of the characteristic equation  

 

√𝑘𝐷𝛾ctg𝜌 + 1 + 𝑘𝐷(𝛾ctg𝛾 − 1) = 0                                                    (9) 

 

           γ11 - the first positive root of the characteristic equation  

 

𝑘𝐷(𝛾ctg𝛾 − 1)(√𝑘𝐷𝑘𝑅𝛾ctg𝜌 − 1) + 𝜌ctg𝜌 − (𝑘𝐷𝑘𝑅𝛾
2 + 1) = 0 

 

                       𝜑11 = √𝑘𝐷𝛾11 sin
2 𝜌11 + 𝜌11 sin

2𝛾11 +
1−𝑘𝐷

√𝑘𝐷𝛾11
sin2 𝛾11sin

2 𝜌11 ;     

 

                       𝜑12 =

𝑘𝐷 {

(sin 𝜌12 +√𝑘𝐷𝑘𝐷𝛾12 cos 𝜌12)(𝛾12 − sin 𝛾12 cos 𝛾12) +                

+√𝑘𝐷 sin 𝛾12(𝛾12 cos 𝛾12 − sin 𝛾12)(cos 𝜌12 − 𝜌12𝑘𝑅 sin 𝜌12) −

−𝛾12 sin
2 𝛾12 [𝑘𝑅𝜌12 cos 𝜌12 + (𝑘𝑅

2 + 1) sin 𝜌12]                             

} ;  

 

                       𝜓2(𝑘𝑅) = √𝑘𝐷𝛾12 sin 𝛾12cos (√𝑘𝐷𝛾12(𝑘𝑅 − 1)) + 

                       +[(1 − 𝑘𝐷) sin 𝛾12 + 𝑘𝐷𝛾12 cos 𝛾12] sin (√𝑘𝐷𝛾12(𝑘𝑅 − 1)) ;  

 

i - the stage number (i = 1, 2, 3,...,J); j - the number of the stage period (j=1.2); k - a 

particle zone number (k=1 is the core, k=2 is the surface layer); c - concentration of 

diffusing matters; 

                               𝑘𝐷 =
𝐷1

𝐷2
 ; 𝑘𝑅 =

𝑅2

𝑅1
 ;    

                             𝜌 = √𝑘𝐷(𝑘𝑅 − 1)𝛾 ; 
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√𝑘𝐷(𝑘𝑅 − 1) − irrational number; 

 

                             𝐹0 =
𝐷1𝜏

𝑅1
2 ;     𝐹0𝑖𝑗 =

𝐷1𝜏𝑖𝑗

𝑅1
2   - Fourier numbers. 

 

Thus, we have identified distribution of concentrations in each zone at any stage and 

any period. Using those results, we can estimate diffusion coefficients of real materials by 

zones, and, applying the interval calculation method, estimate a possible degree of 

destruction of the cellular structure of ingredients at each stage. An adequate analytical 

description of the stepwise dough-kneading process facilitates optimization of the process. 

The model we received ensures analytical estimation of efficiency of discrete diffusion 

from two-zone spherical particles compared to continuous diffusion in case of multi-stage 

matter extraction, which can be presented as the inequation [9–10].  

 

0 < 𝐴 ≤ 1 ,                                                                (10) 

 

where 

𝐴 = −
1

2
𝑘𝐷

𝑖+1
2 𝛾11𝛾

3
𝜑11(1 − 𝛾

2)

𝜓2(𝑘𝑅)

sin 𝛾12 − 𝛾12 cos 𝛾12
sin 𝛾11 −𝛾11 cos 𝛾11

(
2 sin 𝛾11
(1 − 𝛾2)

)
2

[−
𝑘𝑅𝛾𝜓2(𝑘𝑅) sin 𝛾12

𝜑11𝜑12
]

𝑖

∗ 

∗ exp [−∑∑𝛾1𝑗
2 𝐹𝑜𝑖𝑗 −

2

𝑗=1

𝑗

𝑖=1

𝛾11
2 𝑖𝐹𝑜.] 

𝐹𝑜. =
𝐷1𝑡

𝑅1
2  , 

𝑡 = 𝑡𝑑𝑖𝑓 = 𝑡𝑖𝑠𝑜𝑙   , 

 

tdif - time of proper diffusion (matter inflow) during the stage; tisol - time of no-flow 

through the outer surface of a particle. 

This approach can also be used when dividing a particle into an arbitrary number of 

zones with different internal structure. 

Mixing and adsorption in the solid-liquid system, widely used in the food production 

industry, can be both considered in terms of mass transfer as processes with counter mass 

flows [11]. 

In the solid phase, the mixed matter usually consists of two elements: the one held by 

sorption forces, and the other – distributed, usually evenly, in the pore space. During 

sorption in the solid phase, the matter gets accumulated due to sorption itself and due to 

mixing in the pore space. Based on the above, we can formulate the problem as the one 

with an internal mass source, time-dependent and positive in cases of adsorption and 

mixing. 

In general, the problem for spherical particles can be recorded as follows:  

 
𝜕С1

𝜕𝜏
= 𝐷 (

𝜕2С1

𝜕𝑟2
+

2

𝑟

𝜕С1

𝜕𝑟
) + 𝑎𝑐(𝜏);                                        (11) 

𝜏 > 0 ; 0 < 𝑟 < 𝑅 ; 
  

𝐶2(𝑅, 𝜏) = 𝑓(𝜏, 𝑌);                                                   (12) 

 

𝐶1(𝑟, 0) = 𝐶10𝑏 > 𝐶20 ;                              (13) 
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𝐶1(𝑟, 0) = 𝐶10𝑏 < 𝐶20 ;                                                        (14) 

 

𝐶1(𝑟, 0) = 0 ;                                                                 (15) 

 

𝐶1(0, 𝜏) ≠ ∞;                                                                   (16) 

 
𝜕𝐶1(0,𝜏)

𝜕𝑟
= 0 ,                                                                  (17) 

 

where C1, C10 are current and initial values of emulsion concentration inside the 

particles; C2, C20 - current and initial values of emulsion concentration outside the particles; 

τ - time; r - current value of the radius; R - radius of the sphere; ac - rate of adsorption 

(desorption); Y - normal coordinate to the surface of the sphere.  

Formula (13) relates to mixing, formulas (14) and (15) - to adsorption. 

It should be noted that an adsorption isotherm is not included in the above-presented 

system, since the isotherm characterizes the equilibrium state, i.e., should be obtained from 

the solution as the limiting state of the system. 

Conditions (13) - (15) relate to directions of mass flows during mixing and adsorption, 

(16) and (17) are well known. The function ac(τ) shows a change in the adsorption 

(desorption) rate over time and, understandably, depends on the nature of absorption forces, 

value of the adsorbent specific surface, properties of the adsorbed matter, its concentration, 

and other sorption characteristics of the solid-liquid system. In case it is gases (vapors) that 

get adsorbed, sorption goes very quickly (10−8 − 10−9 𝑐), as shown in [12], while 

adsorption from an emulsion lasts dozens of minutes; by order of magnitude it is equal to 

the duration of real diffusion processes. As for desorption during mixing, there are cases 

[13] when desorption takes longer than mixing. So, for the solid-liquid system 

 

0 ≤ 𝑎𝑐(𝜏) ≤ 𝑎𝑖𝑟  , where 0 ≤ 𝑎𝑖𝑟 < ∞ 

 

(𝑎𝑖𝑟  is the initial adsorption rate); thus, it is necessary to determine the form of the 

function. The choice is narrow: among all functions that can be used to solve the system 

(11)-(17), only the cosine functions, the exponential function, and the Gaussian function 

meet the conditions; the last two functions require experimental identification of their 

coefficients, but their curve forms differ little from the cosine function. Given the aforesaid, 

the equation will look as:  

 

𝑎𝑐(𝜏) = 𝑎нс cos
𝜋

2

𝜏

𝜏𝑓𝑐
 ,                                                 (18) 

 

where τfs is the final time of sorption. 

The boundary condition (12) for the counter-flow, which is practically very important, 

is proposed to be:  

 

𝐶2(𝑅, 𝜏) = 𝐶20 + (𝐶2𝑘 − 𝐶20) sin
𝜋

2

𝜏

𝜏𝑘
± 𝛿

𝑑𝐶2(𝑌,𝜏)

𝑑𝑌
 ,                                     (19) 

 

where C2k is final concentration of the outer emulsion; τk is final time of the whole 

process; δ -is thickness of the boundary layer; the plus sign refers to mixing, and the minus 

sign refers to adsorption. 
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3 Results 

In case C2k=0 and δ = 0, the function is similar to changes in concentration of the emulsion 

C2 depending on time τ in industrial mixers (Fig. 1) and, compared to other functions, has 

the same benefits as function (18). 

 

 
 

Fig. 1. Dependence of protein-fat emulsion concentration on time in industrial devices: 1 – ribbon 

mixer; 2 – blade mixer 

The third term of the function (19) relates to a boundary layer on the sorbent surface. 

The third term in condition (19) substantiates the condition. For instance, in case of 

adsorption at τ→0, C(R,0)→0, which meets condition (15); while if there were no third 

term in condition (19), C2(R,0)→C20.  

The latter argument can be explained, in particular, by the fact that under certain 

hydrodynamic conditions δ→0. Finally, the third term brings condition (19) in compliance 

with the experiment by a correct selection of function C2(Y,τ)=f(Y). In case 𝜏 →
∞ 𝐶2(𝑅,∞) → 𝐶2𝑘 → 𝐶20, since concentration gets leveled off by the boundary layer 

thickness, i.e. 
𝑑𝐶2(𝑌,𝜏)

𝑑𝑌
= 0. 

Formulation of the problem might be made more complex by introducing boundary 

conditions of the third kind, but it would only lead to additional factoring of convective 

mass transfer, which is well known and presents little importance for modern intensified 

processes of mixing and adsorption. 

The problem can be solved by the operational method, and after averaging can be 

recorded as:  

 

C1(𝜏) = C10 + 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 + 𝛼5,                                      (20) 
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𝛼1 = −∑

6{
(𝜇𝑛
4+𝑃𝑑𝑘

2)(𝜇𝑛
4+𝑃𝑑𝑘𝑐

2 )(𝐶20−𝐶(𝑟,0)±𝛿
𝑑𝐶2(𝑌,𝜏)

𝑑𝑌
)−

−𝜇𝑛
2 [𝑃𝑑𝑘(𝜇𝑛

4+𝑃𝑑𝑘𝑐
2 )(𝐶𝑘−𝐶10)−4𝑎𝜘𝑐𝜏𝑘𝑐𝑃𝑑𝑘𝑐(𝜇𝑛

4+𝑃𝑑𝑘
2)]

}𝑒−𝜇𝑛
2𝐹𝑜

𝜇𝑛
8+𝜇𝑛

4(𝑃𝑑𝑘
2+𝑃𝑑𝑘𝑐

2 )+𝑃𝑑𝑘𝑃𝑑𝑘𝑠
2 ;∞

𝑛=1                  (21) 

 

𝛼2 + 𝛼3 =
3(𝐶1𝑘−𝐶10)

√𝑃𝑑𝑘
[(𝐴 +

√2

√𝑃𝑑𝑘
) cos 𝑃𝑑𝑘𝐹𝑜 + 𝐵 sin 𝑃𝑑𝑘𝐹𝑜] ;                                 (22) 

 

𝐴 =
𝑠ℎ√

𝑃𝑑𝑘
2
𝑐ℎ√

𝑃𝑑𝑘
2
+ sin√

𝑃𝑑𝑘
2
cos√

𝑃𝑑𝑘
2

𝑐ℎ2√
𝑃𝑑𝑘
2
− cos2√

𝑃𝑑𝑘
2

 

 

𝐵 =
𝑠ℎ√

𝑃𝑑𝑘
2
𝑐ℎ√

𝑃𝑑𝑘
2
−sin√

𝑃𝑑𝑘
2
cos√

𝑃𝑑𝑘
2

𝑐ℎ2√
𝑃𝑑𝑘
2
−cos2 √

𝑃𝑑𝑘
2

                                                             (23) 

 

𝛼4 + α5

= −
3𝑎𝜘𝑐𝜏𝑘𝑐
2𝜋𝑃𝑑𝑘𝑠

(𝑠ℎ2𝑥 cos2 𝑥 + 𝑐ℎ2𝑥 sin2 𝑥 − 1) [
(𝑥𝑐ℎ𝑥 cos 𝑥 − 𝑥𝑠ℎ𝑥 sin 𝑥 − 𝑠ℎ𝑥 cos 𝑥) cos 𝑧 −

−(𝑥𝑐ℎ𝑥 cos 𝑥 + 𝑥𝑠ℎ𝑥 sin 𝑥 − 𝑐ℎ𝑥 sin 𝑥) sin 𝑧
]

𝑠ℎ2𝑥 cos2 𝑥 + 𝑐ℎ2𝑥 sin2 𝑥
; 

(24) 

where  𝑥 = √
𝑃𝑑𝑘𝑐

2
;  𝑧 = 𝑃𝑑𝑘𝑐𝐹𝑜; 

                  𝜇𝑛 = 𝑛𝜋;𝑃𝑑𝑘 =
𝜋𝑅2

2𝐷𝜏𝑘
; 𝑃𝑑𝑘𝑐 =

𝜋𝑅2

2𝐷𝜏𝑘𝑐
; 𝐹𝑜 =

𝐷𝜏

𝑅2
; 

 

Pdk and Pdkc are the Predvoditelev's criteria for the whole process and for sorption; Fo is 

the Fourier number. 

It is necessary to remark that in case of counter-current processes τао=τек , τао=τeo , 

where the “a” index refers to adsorption, the “e” index refers to mixing.  

With τa→∞ (τe→0) the solution (20) can be transformed into  

 

𝐶1̅𝑎(∞) = 𝐶1̅э(0) = 

= 𝐶10 −
3𝑎нс𝜏кс

2𝜋𝑃𝑑кс

(𝑠ℎ2𝑥 cos2 𝑥+𝑐ℎ2𝑥 sin2 𝑥−1)[
(𝑥𝑐ℎ𝑥 cos 𝑥−𝑥𝑠ℎ𝑥 sin 𝑥−𝑠ℎ𝑥 cos𝑥)cos z−
−(𝑥𝑐ℎ𝑥 cos 𝑥+𝑥𝑠ℎ𝑥 sin 𝑥−𝑐ℎ𝑥 sin 𝑥)sin z

]

𝑠ℎ2𝑥 cos2 𝑥+𝑐ℎ2𝑥 sin2 𝑥
 .                 (25) 

 

The second term in this equation is the limiting concentration Cn as a result of sorption, 

or the concentration of the sorbed matter in the solid phase at τe=0. It can be reached at 

τa=τks or can be contained in the solid phase at τe=0 and further remains unchanged. 

Therefore, 𝑧 = 𝑃𝑑кс𝐹𝑜кс = 𝜋/2 and then  

 

𝐶1̅𝑎(∞) = 𝐶1̅э(0) = 𝐶10 + 𝐶𝑛 ,                                                     (26) 

 

where  

 

𝐶𝑛 = −
3𝑎нс𝜏кс

2𝜋𝑃𝑑кс

(𝑠ℎ2𝑥 cos2 𝑥+𝑐ℎ2𝑥 sin2 𝑥−1)(𝑥𝑐ℎ𝑥 cos𝑥+𝑥𝑠ℎ𝑥 sin 𝑥−𝑐ℎ𝑥 sin 𝑥)

𝑠ℎ2𝑥 cos2 𝑥+𝑐ℎ2𝑥 sin2 𝑥
 .                     (27) 
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Fig. 2. Identification of limiting concentration of the sorbed matter 

 

Knowing D, taking τks and ans from Figure 2 obtained from experimental data, we will 

determine Cn, and, hence, the limiting adsorption. 

 

𝑎𝑛 =
𝑚

𝜌
𝐶𝑛 ,                                                                     (28) 

 

where m is the sorbent porosity. 

Equation (27) can be easily used to get a transcendental equation in order to determine 

the internal diffusion coefficient.  

 

𝐷 =
𝜋2𝑅2𝐶𝑛

3𝑎нс𝜏к
2𝐹
 ,                                                      (29) 

where 

𝐹 =
(𝑠ℎ2𝑥 cos2 𝑥 + 𝑐ℎ2𝑥 sin2 𝑥 − 1)(𝑥𝑐ℎ𝑥 cos 𝑥 + 𝑥𝑠ℎ𝑥 sin 𝑥 − 𝑐ℎ𝑥 sin 𝑥)

𝑠ℎ2𝑥 cos2 𝑥 + 𝑐ℎ2𝑥 sin2 𝑥
 . 

 

4 Conclusion 

A simple balance with result (26) leads to the initial equation for an adsorption isotherm in 

the counter-current process  

 

𝑎(∞) =
1

𝜌𝑉𝑐
(𝑉𝑝0𝐶0 − 𝑉𝜌𝑘𝐶𝑘)                                        (30) 

 

or for adsorption  

 

𝑎𝑛 =
1

𝜌𝑉𝑐
[𝐶0(𝑉𝑝0 −𝑚𝑉𝑐) − 𝑉𝑝𝑘𝐶𝑘] ,                         (31) 

where 𝑉𝑐  , 𝑉𝑝0 , 𝑉𝑝𝑘 are volumetric flow rates of the sorbent, emulsion at the entry and 

exit of the mixer; ρ -  is density of the sorbent. 
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The adsorption isotherm curve is identified by dependence of a(∞) and an on ans ,τks and 

Pdks in accordance with equation (27); it should be kept in mind that ans, in its turn, depends 

on C10. 
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