164 research outputs found

    Can inflationary models of cosmic perturbations evade the secondary oscillation test?

    Get PDF
    We consider the consequences of an observed Cosmic Microwave Background (CMB) temperature anisotropy spectrum containing no secondary oscillations. While such a spectrum is generally considered to be a robust signature of active structure formation, we show that such a spectrum {\em can} be produced by (very unusual) inflationary models or other passive evolution models. However, we show that for all these passive models the characteristic oscillations would show up in other observable spectra. Our work shows that when CMB polarization and matter power spectra are taken into account secondary oscillations are indeed a signature of even these very exotic passive models. We construct a measure of the observability of secondary oscillations in a given experiment, and show that even with foregrounds both the MAP and \pk satellites should be able to distinguish between models with and without oscillations. Thus we conclude that inflationary and other passive models can {\em not} evade the secondary oscillation test.Comment: Final version accepted for publication in PRD. Minor improvements have been made to the discussion and new data has been included. The conclusions are unchagne

    Cosmic Strings Lens Phenomenology: Model of Poisson Energy Distribution

    Full text link
    We present a novel approach for investigating lens phenomenology of cosmic strings in order to elaborate detection strategies in galaxy deep field images. To account for the complexity of the projected energy distribution of string networks we assume their lens effects to be similar to those of a straight string carrying a {\em random} lineic energy distribution. In such a model we show that, unlike the case of uniform strings, critical phenomena naturally appear. We explore the properties of the critical lines and caustics. In particular, assuming that the energy coherence length along the string is much smaller than the observation scale, we succeeded in computing the total length of critical lines per unit string length and found it to be 4/3E(3/4)4/\sqrt{3} {\bf E}(3/4). The length of the associated caustic lines can also be computed to be 16/(π3)E(3/4)16/(\pi \sqrt{3}) {\bf E}(3/4). The picture we obtain here for the phenomenology of cosmic string detection is clearly at variance with common lore.Comment: 10 pages, 5 figures. Minor correction

    Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories

    Get PDF
    We present cosmological perturbations of kinetic components based on relativistic Boltzmann equations in the context of generalized gravity theories. Our general theory considers an arbitrary number of scalar fields generally coupled with the gravity, an arbitrary number of mutually interacting hydrodynamic fluids, and components described by the relativistic Boltzmann equations like massive/massless collisionless particles and the photon with the accompanying polarizations. We also include direct interactions among fluids and fields. The background FLRW model includes the general spatial curvature and the cosmological constant. We consider three different types of perturbations, and all the scalar-type perturbation equations are arranged in a gauge-ready form so that one can implement easily the convenient gauge conditions depending on the situation. In the numerical calculation of the Boltzmann equations we have implemented four different gauge conditions in a gauge-ready manner where two of them are new. By comparing solutions solved separately in different gauge conditions we can naturally check the numerical accuracy.Comment: 26 pages, 9 figures, revised thoroughly, to appear in Phys. Rev.

    The Sachs-Wolfe Effect: Gauge Independence and a General Expression

    Full text link
    In this paper we address two points concerning the Sachs-Wolfe effect: (i) the gauge independence of the observable temperature anisotropy, and (ii) a gauge-invariant expression of the effect considering the most general situation of hydrodynamic perturbations. The first result follows because the gauge transformation of the temperature fluctuation at the observation event only contributes to the isotropic temperature change which, in practice, is absorbed into the definition of the background temperature. Thus, we proceed without fixing the gauge condition, and express the Sachs-Wolfe effect using the gauge-invariant variables.Comment: 5 pages, closer to published versio

    Cost-effectiveness of structured group psychoeducation versus unstructured group support for bipolar disorder: results from a multi-centre pragmatic randomised controlled trial

    Get PDF
    Background Bipolar disorder (BD) costs the English economy an estimated £5.2billion/year, largely through incomplete recovery. This analysis estimated the cost-effectiveness of group psychoeducation (PEd), versus group peer support (PS), for treating BD. Methods A 96-week pragmatic randomised controlled trial (RCT), conducted in NHS primary care. The primary analysis compared PEd with PS, using multiple imputed datasets for missing values. An economic model was used to compare PEd with treatment as usual (TAU). The perspective was Health and Personal Social Services. Results Participants receiving PEd (n=153) used more (costly) health-related resources than PS (n=151) (net cost per person £1098 (95% CI, £252-£1943)), with a quality-adjusted life year (QALY) gain of 0.023 (95% CI, 0.001-0.056). The cost per QALY gained was £47,739. PEd may be cost-effective (versus PS) if decision makers are willing to pay at least £37,500 per QALY gained. PEd costs £10,765 more than PS to avoid one relapse. The economic model indicates that PEd may be cost-effective versus TAU if it reduces the probability of relapse (by 15%) or reduces the probability of and increases time to relapse (by 10%). Limitations Participants were generally inconsistent in attending treatment sessions and low numbers had complete cost/QALY data. Factors contributing to pervasive uncertainty of the results are discussed. Conclusions This is the first economic evaluation of PEd versus PS in a pragmatic trial. PEd is associated with a modest improvement in health status and higher costs than PS. There is a high level of uncertainty in the data and results

    Observational constraint on generalized Chaplygin gas model

    Get PDF
    We investigate observational constraints on the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy from the latest observational data: the Union SNe Ia data, the observational Hubble data, the SDSS baryon acoustic peak and the five-year WMAP shift parameter. It is obtained that the best fit values of the GCG model parameters with their confidence level are As=0.730.06+0.06A_{s}=0.73^{+0.06}_{-0.06} (1σ1\sigma) 0.09+0.09^{+0.09}_{-0.09} (2σ)(2\sigma), α=0.090.12+0.15\alpha=-0.09^{+0.15}_{-0.12} (1σ1\sigma) 0.19+0.26^{+0.26}_{-0.19} (2σ)(2\sigma). Furthermore in this model, we can see that the evolution of equation of state (EOS) for dark energy is similar to quiessence, and its current best-fit value is w0de=0.96w_{0de}=-0.96 with the 1σ1\sigma confidence level 0.91w0de1.00-0.91\geq w_{0de}\geq-1.00.Comment: 9 pages, 5 figure

    A parametric model for dark energy

    Full text link
    Determining the mechanism behind the current cosmic acceleration constitutes a major question nowadays in theoretical physics. If the dark energy route is taken, this problem may potentially bring to light new insights not only in Cosmology but also in high energy physics theories. Following this approach, we explore in this paper some cosmological consequences of a new time-dependent parameterization for the dark energy equation of state (EoS), which is a well behaved function of the redshift zz over the entire cosmological evolution, i.e., z[1,)z\in [-1,\infty). This parameterization allows us to divide the parametric plane (w0,w1)(w_0,w_1) in defined regions associated to distinct classes of dark energy models that can be confirmed or excluded from a confrontation with current observational data. A statistical analysis involving the most recent observations from type Ia supernovae, baryon acoustic oscillation peak, Cosmic Microwave Background shift parameter and Hubble evolution H(z)H(z) is performed to check the observational viability of the EoS parameterization here proposed.Comment: 6 pages, 3 figures, LaTe

    Cosmological Constraints on Decaying Dark Matter

    Full text link
    We present a complete analysis of the cosmological constraints on decaying dark matter. Previous analyses have used the cosmic microwave background and Type Ia supernova. We have updated them with the latest data as well as extended the analysis with the inclusion of Lyman-α\alpha forest, large scale structure and weak lensing observations. Astrophysical constraints are not considered in the present paper. The bounds on the lifetime of decaying dark matter are dominated by either the late-time integrated Sachs-Wolfe effect for the scenario with weak reionization, or CMB polarization observations when there is significant reionization. For the respective scenarios, the lifetimes for decaying dark matter are Γ1100\Gamma^{-1} \gtrsim 100 Gyr and (fΓ)15.3×108 (f \Gamma) ^{-1} \gtrsim 5.3 \times 10^8 Gyr (at 95.4% confidence level), where the phenomenological parameter ff is the fraction of the decay energy deposited in baryonic gas. This allows us to constrain particle physics models with dark matter candidates through investigation of dark matter decays into Standard Model particles via effective operators. For decaying dark matter of 100\sim 100 GeV mass, we found that the size of the coupling constant in the effective dimension-4 operators responsible for dark matter decay has to generically be 1022 \lesssim 10^{-22}. We have also explored the implications of our analysis for representative models in theories of gauge-mediated supersymmetry breaking, minimal supergravity and little Higgs.Comment: 29 pages, 6 figures. Added references and corrected typos as well as grammatical oversight
    corecore