44 research outputs found

    The gastric acid pocket is attenuated in H. pylori infected subjects

    Get PDF
    Objective Gastric acid secretory capacity in different anatomical regions, including the postprandial acid pocket, was assessed in Helicobacter pylori positive and negative volunteers in a Western population. Design We studied 31 H. pylori positive and 28 H. pylori negative volunteers, matched for age, gender and body mass index. Jumbo biopsies were taken at 11 predetermined locations from the gastro-oesophageal junction and stomach. Combined high-resolution pH metry (12 sensors) and manometry (36 sensors) was performed for 20 min fasted and 90 min postprandially. The squamocolumnar junction was marked with radio-opaque clips and visualised radiologically. Biopsies were scored for inflammation and density of parietal, chief and G cells immunohistochemically. Results Under fasting conditions, the H. pylori positives had less intragastric acidity compared with negatives at all sensors >1.1 cm distal to the peak lower oesophageal sphincter (LES) pressure (p<0.01). Postprandially, intragastric acidity was less in H. pylori positives at sensors 2.2, 3.3 and 4.4 cm distal to the peak LES pressure (p<0.05), but there were no significant differences in more distal sensors. The postprandial acid pocket was thus attenuated in H. pylori positives. The H. pylori positives had a lower density of parietal and chief cells compared with H. pylori negatives in 10 of the 11 gastric locations (p<0.05). 17/31 of the H. pylori positives were CagA-seropositive and showed a more marked reduction in intragastric acidity and increased mucosal inflammation. Conclusions In population volunteers, H. pylori positives have reduced intragastric acidity which most markedly affects the postprandial acid pocket

    Leech blood-meal invertebrate-derived DNA reveals differences in Bornean mammal diversity across habitats

    Get PDF
    The application of metabarcoding to environmental and invertebrate-derived DNA (eDNA and iDNA) is a new and increasingly applied method for monitoring biodiversity across a diverse range of habitats. This approach is particularly promising for sampling in the biodiverse humid tropics, where rapid land-use change for agriculture means there is a growing need to understand the conservation value of the remaining mosaic and degraded landscapes. Here we use iDNA from blood-feeding leeches (Haemadipsa picta) to assess differences in mammalian diversity across a gradient of forest degradation in Sabah, Malaysian Borneo. We screened 557 individual leeches for mammal DNA by targeting fragments of the 16S rRNA gene and detected 14 mammalian genera. We recorded lower mammal diversity in the most heavily degraded forest compared to higher quality twice logged forest. Although the accumulation curves of diversity estimates were comparable across these habitat types, diversity was higher in twice logged forest, with more taxa of conservation concern. In addition, our analysis revealed differences between the community recorded in the heavily logged forest and that of the twice logged forest. By revealing differences in mammal diversity across a human-modified tropical landscape, our study demonstrates the value of iDNA as a noninvasive biomonitoring approach in conservation assessments. © 2020 The Authors. Molecular Ecology published by John Wiley & Sons Lt

    Mutations in the pH-Sensing G-protein-Coupled Receptor GPR68 Cause Amelogenesis Imperfecta

    Get PDF
    Amelogenesis is the process of dental enamel formation, leading to the deposition of the hardest tissue in the human body. This process requires the intricate regulation of ion transport and controlled changes to the developing enamel matrix pH. The means by which the enamel organ regulates pH during amelogenesis is largely unknown. We identified rare homozygous variants in GPR68 in three families with Amelogenesis Imperfecta, a genetically and phenotypically heterogeneous group of inherited conditions associated with abnormal enamel formation. Each of these homozygous variants (a large in-frame deletion, a frameshift deletion and a missense) were predicted to result in loss of function. GPR68 encodes a proton sensing G-protein-coupled receptor with sensitivity in the pH range that occurs in the developing enamel matrix during amelogenesis. Immunohistochemistry of rat mandibles confirmed localisation of GPR68 in the enamel organ at all stages of amelogenesis. Our data identify a role for GPR68 as a proton sensor that is required for proper enamel formation

    Feasibility and ethics of using data from the Scottish newborn blood spot archive for research

    Get PDF
    Background: Newborn heel prick blood spots are routinely used to screen for inborn errors of metabolism and life-limiting inherited disorders. The potential value of secondary data from newborn blood spot archives merits ethical consideration and assessment of feasibility for public benefit. Early life exposures and behaviours set health trajectories in childhood and later life. The newborn blood spot is potentially well placed to create an unbiased and cost-effective population-level retrospective birth cohort study. Scotland has retained newborn blood spots for all children born since 1965, around 3 million in total. However, a moratorium on research access is currently in place, pending public consultation. Methods: We conducted a Citizens’ Jury as a first step to explore whether research use of newborn blood spots was in the public interest. We also assessed the feasibility and value of extracting research data from dried blood spots for predictive medicine. Results: Jurors delivered an agreed verdict that conditional research access to the newborn blood spots was in the public interest. The Chief Medical Officer for Scotland authorised restricted lifting of the current research moratorium to allow a feasibility study. Newborn blood spots from consented Generation Scotland volunteers were retrieved and their potential for both epidemiological and biological research demonstrated. Conclusions: Through the Citizens’ Jury, we have begun to identify under what conditions, if any, should researchers in Scotland be granted access to the archive. Through the feasibility study, we have demonstrated the potential value of research access for health data science and predictive medicine

    Search for the associated production of the Higgs boson with a top-quark pair

    Get PDF
    A search for the standard model Higgs boson produced in association with a top-quark pair t t ¯ H (tt¯H) is presented, using data samples corresponding to integrated luminosities of up to 5.1 fb −1 and 19.7 fb −1 collected in pp collisions at center-of-mass energies of 7 TeV and 8 TeV respectively. The search is based on the following signatures of the Higgs boson decay: H → hadrons, H → photons, and H → leptons. The results are characterized by an observed t t ¯ H tt¯H signal strength relative to the standard model cross section, μ = σ/σ SM ,under the assumption that the Higgs boson decays as expected in the standard model. The best fit value is μ = 2.8 ± 1.0 for a Higgs boson mass of 125.6 GeV

    Measurement of prompt Jψ\psi pair production in pp collisions at \sqrt s = 7 Tev

    Get PDF
    Production of prompt J/ ψ meson pairs in proton-proton collisions at s s√ = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 fb −1 . The two J/ ψ mesons are fully reconstructed via their decays into μ + μ − pairs. This observation provides for the first time access to the high-transverse-momentum region of J/ ψ pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/ ψ transverse momentum ( p T J/ ψ ) and rapidity (| y J/ ψ |): | y J/ ψ | 6.5 GeV/ c ; 1.2 4.5 GeV/ c . The total cross section, assuming unpolarized prompt J/ ψ pair production is 1.49 ± 0.07 (stat) ±0.13 (syst) nb. Different assumptions about the J/ ψ polarization imply modifications to the cross section ranging from −31% to +27%

    Damaging sediment density flows triggered by tropical cyclones

    Get PDF
    The global network of subsea fibre-optic cables plays a critical role in the world economy and is considered as strategic infrastructure for many nations. Sediment density flows have caused significant disruption to this network in the recent past. These cable breaks represent the only means to actively monitor such flows over large oceanic regions. Here, we use a global cable break database to analyse tropical cyclone triggering of sediment density flows worldwide over 25 yrs. Cable breaking sediment density flows are triggered in nearly all areas exposed to tropical cyclones but most occur in the NW Pacific. They are triggered by one of three sets of mechanisms. Tropical cyclones directly trigger flows, synchronous to their passage, as a consequence of storm waves, currents and surges. Cyclones also trigger flows indirectly, with near-synchronous timing to their passage, as a consequence of peak flood discharges. Last, cyclones trigger flows after a delay of days as a consequence of the failure of large volumes of rapidly deposited sediment. No clear relationship emerges between tropical cyclone activity (i.e. track, frequency and intensity) and the number of sediment density flows triggered. This is a consequence of the short period of observation. However, expansion of the cable network and predicted changes to cyclone activity in specific regions increases the likelihood of increasing numbers of damaging flows

    Differential effects of fertilisers on pollination and parasitoid interaction networks

    No full text
    Grassland fertilisation drives non-random plant loss resulting in areas dominated by perennial grass species. How these changes cascade through linked trophic levels, however, is not well understood. We studied how grassland fertilisation propagates change through the plant assemblage into the plant–flower-visitor, plant–leaf miner and leaf miner–parasitoid networks using a year's data collection from a long-term grassland fertiliser application experiment. Our experiment had three fertiliser treatments each applied to replicate plots 15 m2 in size: mineral fertiliser, farmyard manure, and mineral fertiliser and farmyard manure combined, along with a control of no fertiliser. The combined treatment had the most significant impact, and both plant species richness and floral abundance decreased with the addition of fertiliser. While insect species richness was unaffected by fertiliser treatment, fertilised plots had a significantly higher abundance of leaf miners and parasitoids and a significantly lower abundance of bumblebees. The plant–flower-visitor and plant–herbivore networks showed higher values of vulnerability and lower modularity with fertiliser addition, while leaf miner–parasitoid networks showed a rise in generality. The different groups of insects were impacted by fertilisers to varying degrees: while the effect on abundance was the highest for leaf miners, the vulnerability and modularity of flower-visitor networks was the most affected. The impact on the abundance of leaf miners was positive and three times higher than the impact on parasitoids, and the impact on bumblebee abundance was negative and double the magnitude of impact on flower abundance. Overall, our results show that while insect species richness was unaffected by fertilisers, network structure changed significantly as the replacement of forbs by grasses resulted in changes in relative abundance across trophic levels, with the direction of change depending on the type of network. Synthesis. By studying multiple networks simultaneously, we were able to rank the relative impact of habitat change on the different groups of species within the community. This provided a more holistic picture of the impact of agricultural intensification and provides useful information when deciding on priorities for mitigation
    corecore