25 research outputs found

    An efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and Hurwitz zeta functions

    Full text link
    This paper sketches a technique for improving the rate of convergence of a general oscillatory sequence, and then applies this series acceleration algorithm to the polylogarithm and the Hurwitz zeta function. As such, it may be taken as an extension of the techniques given by Borwein's "An efficient algorithm for computing the Riemann zeta function", to more general series. The algorithm provides a rapid means of evaluating Li_s(z) for general values of complex s and the region of complex z values given by |z^2/(z-1)|<4. Alternatively, the Hurwitz zeta can be very rapidly evaluated by means of an Euler-Maclaurin series. The polylogarithm and the Hurwitz zeta are related, in that two evaluations of the one can be used to obtain a value of the other; thus, either algorithm can be used to evaluate either function. The Euler-Maclaurin series is a clear performance winner for the Hurwitz zeta, while the Borwein algorithm is superior for evaluating the polylogarithm in the kidney-shaped region. Both algorithms are superior to the simple Taylor's series or direct summation. The primary, concrete result of this paper is an algorithm allows the exploration of the Hurwitz zeta in the critical strip, where fast algorithms are otherwise unavailable. A discussion of the monodromy group of the polylogarithm is included.Comment: 37 pages, 6 graphs, 14 full-color phase plots. v3: Added discussion of a fast Hurwitz algorithm; expanded development of the monodromy v4:Correction and clarifiction of monodrom

    Resummation of Nonalternating Divergent Perturbative Expansions

    Get PDF
    A method for the resummation of nonalternating divergent perturbation series is described. The procedure constitutes a generalization of the Borel-Pad\'{e} method. Of crucial importance is a special integration contour in the complex plane. Nonperturbative imaginary contributions can be inferred from the purely real perturbative coefficients. A connection is drawn from the quantum field theoretic problem of resummation to divergent perturbative expansions in other areas of physics.Comment: 5 pages, LaTeX, 2 tables, 1 figure; discussion of the Carleman criterion added; version to appear in Phys. Rev.

    Dressed States Approach to Quantum Systems

    Full text link
    Using the non-perturbative method of {\it dressed} states previously introduced in JPhysA, we study effects of the environment on a quantum mechanical system, in the case the environment is modeled by an ensemble of non interacting harmonic oscillators. This method allows to separate the whole system into the {\it dressed} mechanical system and the {\it dressed} environment, in terms of which an exact, non-perturbative approach is possible. When applied to the Brownian motion, we give explicit non-perturbative formulas for the classical path of the particle in the weak and strong coupling regimes. When applied to study atomic behaviours in cavities, the method accounts very precisely for experimentally observed inhibition of atomic decay in small cavities PhysLA, physics0111042

    Resummation of the Divergent Perturbation Series for a Hydrogen Atom in an Electric Field

    Get PDF
    We consider the resummation of the perturbation series describing the energy displacement of a hydrogenic bound state in an electric field (known as the Stark effect or the LoSurdo-Stark effect), which constitutes a divergent formal power series in the electric field strength. The perturbation series exhibits a rich singularity structure in the Borel plane. Resummation methods are presented which appear to lead to consistent results even in problematic cases where isolated singularities or branch cuts are present on the positive and negative real axis in the Borel plane. Two resummation prescriptions are compared: (i) a variant of the Borel-Pade resummation method, with an additional improvement due to utilization of the leading renormalon poles (for a comprehensive discussion of renormalons see [M. Beneke, Phys. Rep. vol. 317, p. 1 (1999)]), and (ii) a contour-improved combination of the Borel method with an analytic continuation by conformal mapping, and Pade approximations in the conformal variable. The singularity structure in the case of the LoSurdo-Stark effect in the complex Borel plane is shown to be similar to (divergent) perturbative expansions in quantum chromodynamics.Comment: 14 pages, RevTeX, 3 tables, 1 figure; numerical accuracy of results enhanced; one section and one appendix added and some minor changes and additions; to appear in phys. rev.

    QED Effective Action Revisited

    Get PDF
    The derivation of a convergent series representation for the quantum electrodynamic effective action obtained by two of us (S.R.V. and D.R.L.) in [Can. J. Phys. vol. 71, p. 389 (1993)] is reexamined. We present more details of our original derivation. Moreover, we discuss the relation of the electric-magnetic duality to the integral representation for the effective action, and we consider the application of nonlinear convergence acceleration techniques which permit the efficient and reliable numerical evaluation of the quantum correction to the Maxwell Lagrangian.Comment: 20 pages, LaTeX, 1 table; minor additions and adjustments; to appear in Can. J. Phy

    Basic Methods for Computing Special Functions

    Get PDF
    This paper gives an overview of methods for the numerical evaluation of special functions, that is, the functions that arise in many problems from mathematical physics, engineering, probability theory, and other applied sciences. We consider in detail a selection of basic methods which are frequently used in the numerical evaluation of special functions: converging and asymptotic series, including Chebyshev expansions, linear recurrence relations, and numerical quadrature. Several other methods are available and some of these will be discussed in less detail. We give examples of recent software for special functions where these methods are used. We mention a list of new publications on computational aspects of special functions available on our website
    corecore