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PHYSICAL REVIEW A, VOLUME 64, 013403
Resummation of the divergent perturbation series for a hydrogen atom in an electric field
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F-75252 Paris Cedex 05, France
National Institute of Standards and Technology, Mail Stop 8401, Gaithersburg, Maryland 20899-8401
Institut fur Theoretische Physik, Technische UniversRaesden, 01062 Dresden, Germany
(Received 7 August 2000; revised manuscript received 7 December 2000; published 31 Mpy 2001

We consider the resummation of the perturbation series describing the energy displacement of a hydrogenic
bound state in an electric fielknown as the Stark effect or the LoSurdo-Stark effeathich constitutes a
divergent formal power series in the electric-field strength. The perturbation series exhibits a rich singularity
structure in the Borel plane. Resummation methods are presented that appear to lead to consistent results even
in problematic cases where isolated singularities or branch cuts are present on the positive and negative real
axis in the Borel plane. Two resummation prescriptions are compéjealvariant of the Borel-Padesum-
mation method, with an additional improvement due to utilization of the leading renormalon polg4,) and
contour-improved combination of the Borel method with an analytic continuation by conformal mapping, and
Padeapproximations in the conformal variable. The singularity structure in the case of the LoSurdo-Stark
effect in the complex Borel plane is shown to be similafdivergenj perturbative expansions in quantum
chromodynamics.

DOI: 10.1103/PhysRevA.64.013403 PACS nuntber32.60:+i, 32.70.Jz, 11.15.Bt, 11.10.Jj

I. INTRODUCTION the Borel transform of the divergent perturbation series for
the LoSurdo-Stark effect involves two cuts in the Borel
Consider the energy shift of the ground state of atomigplane, generated essentially by the divergent alternating and
hydrogen in an electric field of field strengkhthat we as- nonalternating subcomponents of the perturbation series.
sume to lie along the axis: the energy displacement can be This singularity structure is also expected of tévergenj
expressed in perturbation theory as a formal power serieperturbation series in quantum field theory, notably quantum
The first nonvanishing perturbati¢m atomic units, see also chromodynamicgin this case, the alternating and nonalter-

Eq. (29) below] is the second-order effect nating factorially divergent components correspond in their
mathematical structure to the ultraviolet and infrared
2 (9147l pm)( Pmlz| h19) renormalon.
mE1S Eis—En ' We present results that suggest that the integration con-

tours and resummation techniques discussed here may be of

where the sum ovean runs over the entire spectrum, includ- relevance, at least in part, to theories with degenerate
ing the continuum, but excluding theSlground state, and minima. As a byproduct of these investigations, numerical
E,, is the nonrelativistic(Schralingep energy of themth ~ pseudoeigenvalues are obtained for the LoSurdo-Stark ef-
state. A well known, but perhaps surprising result says thafect; selected field strengths and atomic states are considered.
the coefficients of the terms of ordéf', F®, F8 ... grow The LoSurdo-Stark effect and its associated divergent
so rapidly that the series iR ultimately diverges, irrespec- perturbative expansion, including the the nonperturbative,
tive of how small the field strength. The convergence radiugionanalytic imaginary contributions, have attracted consider-
of the factorially divergent perturbation series is zero. Theable attention, both theoretically and experimentglly-34].
resummation of the divergent series is problematic in théexperiments have been performed in field strengths up to a
considered case, because the Borel transform, from whicbouple of MV/cm[35-38. One might be tempted to say that
the physically correct, finite result is obtained by evaluatingthe autoionization decay width could be interpreted as a
the Laplace-Borel integral—see HEd.1) in Sec. Il below—  paradigmatic example for a nonperturbative effect that ex-
exhibits a rich singularity structure in the complex plane. hibits fundamental limitations to the validity of perturbation

The purpose of this paper is to present numerical evidenctheory (unless the perturbative expansion is combined with
that divergent perturbation series whose Borel transform ex-
hibits a rich singularity structure in the complex plane, can
be resummed to the complete, physically relevant result. Theiro torm “renormalon,” as now commonly used in particle

resummatlo_n methods_ use as input da_ta qnly a f'_n_'te numb?{hysics and large-order perturbation theory, stands for a factorially
of perturbative coefficients. Problematic singularities on th&yjyergent subcomponent of a perturbation series. In quantum field
positive real axis in the Borel plane are treated by appropriteory, this divergent subcomponent is associated with a specific
ate integration prescriptions. In particular, it is shown thatgjass of Feynman diagrantéor example, so-called “bubble dia-
grams”). For a comprehensive discussion, see M. Beneke, Phys.
Rep.317, 1 (1999 and references therein. “Bubble diagrams” are
*Electronic address: ulj@nist.gov illustrated in Fig. libid.
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resummation methogls We briefly summarize here: The poleg. Also, in comparison to the investigatipa5], we use
Rayleigh-Schrdinger perturbation series for the LoSurdo- here a slightly modified, but equivalent integration contour
Stark effect 39,40 can be formulated to arbitrarily high or- for the evaluation of the generalized Borel integisde Ref.
der[1]. The perturbative coefficients grow factorially in ab- [46] and Sec. Il below Our version of the integration con-
solute magnitud¢2], and the radius of convergence of the tour exhibits the additional terms that have to be added to the
perturbation series about the origin is zero. The perturbatioftherwise ~ recommended  principal-value  prescription
series is a divergent, asymptotic expansion in the electrid49,50.56. _ . o
field strengttF, i.e., about zero electric field. This means that AS Stressed above, it has been another main motivation
the perturbative terms at small coupling first decrease in adfor the current investigation to establish the singularity struc-

solute magnitude up to some minimal term. After passingyré of the Borel transform in the complex plane, and to
through the minimal term, the perturbative terms increasél€monstrate the analogy of the singularity structure of the
again in magnitude, and the series ultimately diverges. perturbation series for the LoSurdo-Stark effect to quantum

By the use of aresummationmethod, it is possible to chromodynamic perturbation series. We also consider a di-

assign a finite value to an otherwise divergent series, anergent perturbation series generated by a model problem for

various applications of resummation methods in mathematicd'€0ries with degenerate minima. In the particular model
case discussed here, a perturbation series with real coeffi-

and physics have been given, e.g., in Ref4—-45. When a

divergent series is resummed, the superficial precision limif!€Nts 1S _summed to aeal result—in contrast to the

set by the minimal term can be overcome, and more accurafg?Surdo-Stark effect, there is no imaginary part involved in
s case. One of the three alternative integration contours

results can be obtained as compared to the optimal truncatidfl' :
of the perturbation serieee also the numerical results in introduced in Ref[46] has to be employed. .

the tables of Ref[46]). The divergent perturbation series of 1 HiS paper is organized as follows: In Sec. Il, we give a

the LoSurdo-Stark effect has both alternating and nonalte/2"€f outline of the perturbative expansion for the LoSurdo-

nating componentgas explained in Sec. Il belowThe re- Stark effect. In Secs. Il and IV, we describe the resumma-
summation of nonalternating series or of a series that have 4PN methods that are used to obtain the numerical results

leading or subleading divergent nonalternating componenrésented in Sec. V. In Sec. VI, we consider theories with
corresponds to a resummation “on the cut” in the COmmexdegenerate minima. We conclude with a summary of the
plane[41,47. results in Sec. VII. Finally, the connection of the current

Rather mathematically motivated investigations regardin?@P€r 10 quantum-field-theoretic perturbation series and to

the Borel summability of the divergent perturbation seriesdouble-well oscillators are discussed in the Appendixes A

for the LoSurdo-Stark effect were performed in Refs.and B.
[12,47), and it was established that the perturbation series of
the LoSurdo-Stark effect is Borel summable in the distribu-1l. PERTURBATION SERIES FOR THE LoSURDO-STARK
tional sensdfor the definition of “distributional Borel sum- EFFECT
mability” we refer to Ref.[48]). Here, to supplement the L
mathematically motivated investigations, we consider theOf tlrr:et?]e d?(r)est’eenngteor?:iznbrecligglcagzldéﬁggoig(t)aﬁgj%r?iz-
calculation of transforms of the divergent series, which us&ers N y N gand m are used f'or thg classific?;\tion of the
as input data only a finite number of perturbative coefficient: tomicl état2é$57] For the Stark effect. the perturbative ex-
and exhibit apparent convergence to the complete, physicall . : ; ’ P
relevant result. ansion of the energy eigenval&€n,,n,,m,F) reads[see

In the remarkable investigatioi25], whose significance Eq. (59) of Ref. [1]],
may not have been sufficiently noticed in the field of large- o
order perturbation theory, it.was not qnly sh.own .that it is E(ny,n,,m,F)~ 2 EE]Nr)1 mFN’ 1)
possible to perform the required analytic continuation of the N=o 172
Borel transform beyond its radius of convergence by em-
ploying Padeapproximants, but that it is also possible to whereF is the electric-field strength. F&f— o, the leading
reconstruct the full physical result, including the imaginarylarge-order factorial asymptotics of the perturbative coeffi-
contribution that corresponds to the autoionization decagients have been derived in R¢L6] as
width, by integration in the complex plane.

In Sec. Il, we discuss the singularity structure of the Borel EET%Zm~A§,T%2m+(— 1)NA§,';'311m, N— oo, 2
transform in the complex plane. The structure of a doubly cut
plane has been postulated for quantum chromodynamic peyhereA(Y) is given as an asymptotic series,
turbation serie$49,50, and this structure has been exploited t
to devise resummation prescriptions based on conformal o
mappingd49-59. Here, we present results that suggest that AN ~K(n; nj,m,N)x > aE‘”Jm(Z n;+m+N—K)!.
the convergence of the transforms obtained by conformal ! k=0
mapping can be improved if Padgproximants in the con- ()
formal variable are use@ee also Ref55]). We also discuss

- e nin:m . B

improvements of the “pure” Borel-Padmethod(these ad- The quantitiess, "’ are constants. Thi¢ coefficients in Eg.
ditional improvements take advantage of leading renormaloi3) are given by

013403-2
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K(ni,n;,m,N) Im(z) argt =G .7
— _ 3 1 X | -1 ///
[27Tn n].(nj+m).] // Poles displaced from the real axis
><exp[3(ni—nj)}62 nj+m+l(3n3/2)N_ (4) /// l \

Here, the principal quantum numberas a function of the ® ©)
parabolic quantum numbers, n,, andm is given by[see ‘ " " Re(?)
Eq. (65) in Ref.[1]] x ’ 3 ‘ N ‘

n=n;+n,+|m|+1. (5)

Poles lying on the real axis

According to Eq.(2), the perturbative coefﬂmenl‘éﬁ”,)1 m

for large-ordemM—co of perturbation theory, can be written FIG. 1. Intearation contouE.. . for the evaluation of th N
as a sum of a nonalternating factorially divergent sdffiest - - miegration contout ., for the évaluation ol the gen-

. . h . eralized Borel integral defined in E(lL1). Poles displaced from the
term in Eq.(2)] and of an alternating faCt,?,:'?n”y divergent real axis are evaluated as full poles, whereas those poles that lie on

seriegsecond term in Eq2)]. Because the," ' in EQ.(3)  the real axis are treated as half poles.
are multiplied by the factorial (8;+ m+N—k)!, we infer

that for large perturbation-theory ordiir the term related to  \here we consider the argumenbf Eg(z) as a complex
njn;im

the a,” " coefficient k=0) dominates. Terms withk=1  variable and\ is defined in Eq(8). The additive constargtn
are suppressed in relation to the leading term by a relativéhis case\) in the argument of the Gamma function is cho-
factor of 1IN according to the asymptotics sen in accordance with the notion of an “asymptotically im-

proved” resummatiorisee also Ref58]). It is observed that
1 the additive constank can be shifted by a small integer
+O(N 6 without affecting the convergence of the Borel resummed
series. Because the perturbative coeﬁicidfﬁ%?lzm diverge

for N—«. The leading k=0) coefficient has been evalu- factorially in absolute magnitude, the Borel transfdEg(z)
ated in Ref[2] as has a finite radius of convergence about the origin. The
evaluation of the(generalizeyl Laplace-Borel integralsee
g'“Jm— 1. (7)  Eq.(11) below] therefore requires an analytic continuation of
Eg(z) beyond the radius of convergence. The “classical”
According to Egs(2), (3), and(7), for states withn;<n,, Borel integral is performed in the rangeze (0,), i.e
the nonalternating component of the perturbation serieglong the positive real ax[see, e.g., Eq$8.2.3 and(8.2.9
dominates in large order of perturbation theory, whereas fopf Ref.[41]]. It has been suggested [i6] that the analytic
states witn;>n,, the alternating component is dominant ascontinuation of Eq/(9) into regions where- retains a non-
N—oo. For states wittn;=n,, the oddN perturbative coef- Vvanishing, albeit infinitesimal, imaginary part can be
ficients vanist{16], and the evem coefficients necessarily achieved by evaluating Padgpproximants. Using the first
have the same sign in large ordeee Eq(2)]. Accordingto M +1 terms in the power expansion of the Borel transform
Eq. (2), there are subleading divergent nonalternating contriEg(z), we construct the Padapproximant(we follow the
butions for states wittn;>n,, and there exist subleading notation of Ref[43])
divergent alternating contributions for states with<<n,.
This complicates the resummation of the perturbation series. Pu(2)=[IM/2]/IT(M+1)/2]]e (2), (10

(2nj+m+N-Kk! 1

(2nj+m+N)! NK

lIl. BOREL-PADE RESUMMATION where[ x] denotes the largest positive integer smaller than
We then evaluate thémodified Borel integral along the
integration contou€ , ; shown in Fig. 1 in order to construct
the transforn7gy,(F) where

The resummation of the perturbation serigsby a com-
bination of the Borel transformation and Paalgproximants
proceeds as follows. First we define the parameter

A=2maxny,np) +m-+1. ® 7EM(|=):JC dttr Lexp—)Py(FY). (11

The large-order growth of the perturbative coefficiefgse
Egs.(2) and(3)] suggests the definition of tHgeneralizefl  The syccessive evaluation of transforfi, (F) in increas-
Borel transform{see Eq(4) in Ref.[58]] ing transformation ordeM is performed, and the apparent
_ (1N ] convergence of the transforms is examined. This procedure
Eg(2)=Eg(n1.nz,m,2) =BV [E(n1,n2,m);2] is illustrated in Tables | and Il of Ref46]. In the current

w E(N) evaluation, a slightly modified scheme is used for selecting
2 MMM (9) the poles in the upper-right quadrant of the complex plane as
N=0 F(N+?\) compared to Refl46].

013403-3
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The contourC, 4 is supposed to encircle all poles at only modify the imaginary, but also the real part of the re-
=z, in the upper-right quadrant of the complex plane withsummed value for the perturbation series.
argz;<w/4 in the mathematically negative sense. That is to Formally, the limit of the sequence of ti#,(F) asM
say, the contribution of all poleg with Rez;>0, Imz>0  —o, provided it exists, yields the nonperturbative result in-

and Rez;>Imz;, ferred from the perturbative expansi@b),
lim 7€\, (F)=E(F)=E(n{,n,,m,F). (14
—27i Y, Rest* ! exp(—t)Py(Ft), e

I t=z
_ o ) Because the contoul€, ; shown in Fig. 1 extends into the
is added to the principal valug.V.) of the integral(11)  complex plane, the transfornf&, (F) acquire an imaginary
carried out in the rangee (0,.). Note the further restriction  part even though the perturbative coefficients in Bg.are
(Imz;<Rez or equivalently arg;<a/4) with regard to the (eg|.
selection of poles in comparison to the previous investigation |n the context of numerical analysis, the concept of incre-
[46] In praCtical calculations, this modification is ObserVEddu”ty [61] may be used for the ana|ysis of the convergence
not to affect the numerical values of the transforfs, (F)  of the transform<Ey (F) of increasing ordeM. If a certain
defined in Eq.(11) in higher transformation ordeM =10  number of subsequent transforms exhibit apparent numerical
[i.e., for largeM, see also Eq(14) below], because the poles convergence within a specified relative accuracy, then the
are observed to cluster near the real axis in higher transfogalculation of transforms is stopped, and the result of the last
mation order, and so the contribution of poles wit#f4  calculated transformation is taken as the numerical limit of

<argz;<m/2 gradually vanishes. We have, the series under investigation. It has been observed in Refs.
" [46,56 that for a number of physically relevant perturbation

TEN(F)= pf dt t* texp(—t)Py(F t) series, the apparent numerical convergence of the transforms
0 (11), with increasing transformation order, leads to the

physically correct results.
—2mi >, Rest* Texp(—t)Py(Ft). (12 It is observed that the rate of convergence of the trans-
I t=z forms (11) can be enhanced if instead of the unmodified
I T . Padeapproximantg10) leading renormalon poles are explic-
The principal-value prescriptioffirst term in Eq.(12)] for itly used for the construction of modified approximants. For

the evaluation of the Laplace-Borel integral has been reCOMpe ground state, this entails the following replacement in E
mended in Refs[56,59. This prescription leads to a real (11):9 ' grep 4

(rather than complexresult for the energy shift and cannot
account for the width of the quasistationary state. The addi- Pu(z)—Pu(2),
tional pole contributiongsecond term in Eq(12)] are re-

sponsible for complex-valuedimaginary corrections that where
lead, in particular, to the decay width. 1 M+ 4 M—3
By contour integration(Cauchy Theoremand Jordan’s Pi(2)= / H M (z), (15
Lemma, one can show that the result obtained alBng is 1-2° 2 2 EL ()
equivalent to an integration along the straight line with °
argz= /4, where E5({)=(1—¢?)Eg({). For the excited state with

w0 quantum numbers; =3, n,=0, andm=1, we replace
7EM(F)=C)‘f dt t" texp —c t)Py(Fct), (13
0

Pu(2)—Py(2),
wherec=exp(=/4). This contour has been used in R&5] where
(see also p. 815 in Ref60]). The factor exp{ct) and the
asymptotic behavior of the PadgproximantPy(F ct) as 1 [[M+2 M—1
t— oo together ensure that the integrand falls off sufficiently Pu(z)= 11— Tﬂ / HTIH (2), (16)
rapidly so that the Cauchy Theorem and Jordan’s Lemma Eg

can be applied to show the equivalence of the representations

(12) and (13). whereEj(£) =(1— {?)Eg(). The resummation method by a
The representatiofL3) illustrates the fact that the integra- combination of Borel and Padetechniques—current

tion in the complex plane alon@ . ; analytically continues section—will be referred to as “method I” throughout the

the resummed result in those cases where the evaluation efirrent paper.

the standard Laplace-Borel integral is not feasible due to

poles on the real axis. The representatigh$) and (12) IV. DOUBLY-CUT BOREL PLANE AND RESUMMATION

serve to clarify the role of the additional terms that have to BY CONFORMAL MAPPING

be added to the result obtained by the principal-value pre- ) ) .

scription in order to obtain the full physical result, including (hﬁccordlng to Eqs(2) and(3), the perturbative coefficient

the nonperturbative, nonanalytic contributions. Note that, a&n,n,m~ for largeN, can be written as the sum of an alter-

stressed in Ref46], the pole contributions in general do not nating and of a nonalternating divergent series. In view of
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Egs.(4) and (7), we conclude that the series defined in Eqg. MM N M
9), EMw)=> —F _WN= CyyN+O(yM*Y,
2 EQhm (23)
Ee(2)= 2 w2, . _ _
K=o I'(N+X) where the coefficient€, are uniquely determineidee, e.qg.,
Egs.(36) and(37) of Ref.[49]]. We define the partial sum of
has a radius of convergence the Borel transform, re-expanded in terms of the conformal
variabley, as
2
s=— 17 M
3 !
3n E5(y)= 2 Cwy". (24)

about the origin, whera is the principal quantum number . )
[see Eq(5)]. Therefore, the function We then evaluatower-diagonal Padeapproximants to the
function &' ¥ (y),
S, S £y =[IMRUIIM+ D/2llen(y). (29
— N ! = + 'M .
Eg(w)= >, OIS (18) B (Y ey

N=0
) ) . ) We define the following transforms,

has a unit radius of convergence about the origin. It isenot
priori obvious if the pointsw=—1 andw=+1 represent . "
isolated singularities or branch points. The asymptotic prop- ~ Z"Em(F)=s"|  dww* " exp(—w)&"gy(w)].
erties(2) and(3) together with Eq(6) suggest that the points €1
w=—1 andw=+1 do not constitute poles of finite order.
We observe that the leading factorial growth of the perturbaat increasingM, the limit asM—o, provided it exists, is
tive coefficients in large perturbation ordiris divided out  then again assumed to represent the complete, physically rel-
in the Borel transform(18), which is a sum oveN. The  evant solution,
perturbative coefficientE(") , can be written as an

asymptotic series ovek [see Eq.(3)]. We interchange the
order of the summations ové&t andk, we use Eq(6) and

take advantage of the identity We do not consider the question of the existence of this limit
- here (for an outline of questions related to these issues we

(26)

E(F)= lim T"Ey(F). (27)

M—o

WN
N¢

refer to Ref.[50]; potential problems at excessively strong
coupling are discussed in Sec. Il C of RE32]).
Inverting Eq.(22) yields[see Eq.(26)]
W) Vi+w—+1-w
W)= ———.
y V1iI+w+1-w

=Li(W). (19)

The Borel transforng€z(w) can then be written as a sum over

terms of the formr,(w) where fork— o, (28)

Ti(w)~C(n;,nj,mya, ™ Li(w). (20)
The conformal mapping given by Eqg&2) and (28) maps
The coefficientC(n; ,n;,m) is given by the doubly cutw plane with cuts running fronw=1 to
w=o andw=—1 to w=—o unto the unit circle in the
C(n;,nj,m)=—[2mnnjl (nj+m)!] 1 complexy plane. The cuts themselves are mapped to the

o e2n+mtl edge of the unit circle in thg plane.

X exp(3 (n—n;)}6°" ' (21) In comparison to the investigatiofi49] and[50], we use

here a different conformal mapping defined in E@2) and

(28) which reflects the different singularity structure in the

complex plandcf. Eq. (27) in Ref.[49]]. We also mention

the application of Padapproximants for the numerical im-

provement of the conformal mapping performed according to

Eq. (25). In comparison to a recent investigatisb], where

5 the additional Padenprovement in the conformal variable is
w= _y, (22)  also used, we perform here the analytic continuation by a

1+y? mapping whose structure reflects the double cuts suggested
by the asymptotic properties of the perturbative coefficients

(this conformal mapping preserves the origin of the complexgiven in Egs.(2), (3), and(6) [cf. Eq. (5) in Ref.[55]].

plane. Here, we refer tav as the Borel variable, and we call  The method introduced in this section will be referred to

y the conformal variable. We then express ti¢h partial as “method II.” It is one of the motivations for the current

sum of Eq.(18) as paper to contrast and compare the two methods | and Il. A

These considerations suggest that the poimts—1 and
w=+1 represent essential singulariti@s this case, branch
points of the Borel transforn€z(w) defined in Eq(18). For
the analytic continuation ofg(w) by conformal mapping,
we writew as

013403-5
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comparison of different approaches to the resummation proltive expansior(1) for two states of atomic hydrogen. These
lem for the series with both alternating and nonalternatingare the ground staten{=n,=m=0) and an excited state
divergent components appears useful, in part because tlvth parabolic quantum numberg=3, n,=0, m=1. We
conformal mappingwithout further Padémprovementhas list here the first few perturbative coefficients for the states
been recommended for the resummation of quantum chrainder investigation. For the ground state, we h@vetomic
modynamic perturbation seri¢49,50. units),

We do not consider order-dependent mappings [Ete

54]. For an order-dependent mapping to be constructed, the 1 9 _, 355 _, 2512779
conformal mapping in Eq22) has to be modified, and a free Eood F) =~ 2 ZF T 64 P 512
parametep has to be introduced. The coefficiel@g in the

accordingly modified Eq(24) then becomep dependent. y g 13012777803 29
The free parametes is chosen so that the-dependent co- 16384

efficient Cy(p) of order M vanishes. Consequently, the

choice ofp depends on the ordéM of perturbation theory, The perturbation series for the statg=3, n,=0, m=1 is

and in this way, the mapping becomes order dependent. Ceglternating, but has a subleading nonalternating component

tain complications arise becaugecannot be chosen arbi- [see Eq(2)]. The first perturbative terms read

trarily, but has to be selected, roughly speaking, as the first

zero of the p-dependent coefficienCy(p) for which the (F)=— i+ 4_5F_ 31 875F2

absolute magnitude of the derivati@,(p) is small(this is 301 50 2 2

explained in Ref[60], p. 886. It is conceivable that with a

judicious choice op, further acceleration of the convergence 54140 625,;3_ 715751953 12,":24

can be achieved, especially when the order-dependent map- 4 16

ping is combined with a Padapproximation as it is done

here in Eq.(25) with our orderindependenmapping. In the  Note that forF=0, the unperturbed nonrelativistic energy is

current paper, we restrict the discussion to the conformalecovered, which is-1/(2n?) in atomic units. In contrast to

order-independent mappir(@2) that is nevertheless optimal the real perturbative coefficients, the energy pseudoeigen-

in the sense discussed in Ref49,50. value (resonanceE(n;,n,,m,F) has a real and an imagi-
nary component,

+.--. (30

i
V. NUMERICAL CALCULATIONS E(ny,n,,m,F)= ReEnlnzm(F)_EFnlnzm(F), (31)
In this section, the numerical results based on the resum-

mation methods introduced in Secs. Ill and IV are presentedyhererl, , .(F) is the autoionization width.
Before we describe the calculation in detail, we should note re
that relativistic corrections to both the real and the imaginan(/a
part of the energy contribute at a relative order @fx}?
compared to the leading nonrelativistic effect that is treate(g

in the current papeiand in the previous work on the subject, . . . .
see, e.g., Refs[16,25). Therefore, the theoretical uncer- ishing perturbative coefficients. The apparent convergence of

i S ) he transforms defined in Eq&l1) and(26) in higher order
tainty due to relativistic effects can be estimated to be, aI}S examined. In the case of the Borel-Padmsforms defined
best, 1 part in 1D(for an outline of the relativistic and quan-

tum electrodynamic corrections in hydrogen see R&3- in Eq. (11), use is made of the replacements in H3$) and

) S s (16) [“leading poles are being put in by hanyl"This pro-
?hg])' I\/rlwe.asulglemfgr;és T veri/hhlghdfms ?rr]e dléflg%[ﬂlﬁ]. At cedure leads to the numerical results listed in Tables | and .
be atCSIeI\\/II?// ?T)'Gih strengins Of h tsh ant_ ' | adL_J.tpr The numerical error of our results is estimated on the basis of
abou ch, the accuracy ot the theoretical preciction 4, highest and lowest value of the four highest-order trans-
exceeds the experimental precision, and relativistic effects dP

. orms.
not need to be taken into account. . .
) - ) . An important result of the comparison of the methods
The perturbative coefficien&N)__ defined in Eq(1) for P b

nynpm introduced in Secs. Il and 1V is the following: Both methods

the energy shift can be inferred, to arbitrarily high order,appear to accomplish a resummation of the perturbation se-
from the Egs.(9), (13-15, (28-33, (59-67, and(73) in  ries to the physically correct result. MethodBorel+Pade
Ref.[1]. The atomic unit system is used in the sequel, as isvith leading renormalon poles, see Sec) Bhd method II
customary for this type of calculatidd,6,9,11. The unit of  (Borel+ Padeimproved conformal mapping, see Sec) Bp-
energy isa® m802=27.211 eV wherex is the fine-structure pear to lead to results of comparable accuracy.
constant, and the unit of the electric field is the field strength To date, a rigorous theory of the performance of the re-
felt by an electron at a distance of one Bohr radigs, to a  summation methods for divergent series of the type dis-
nucleus of elementary charge, which is L) (e/a3,,)  cussed in this papefwith alternating and nonalternating
=5.142<10° MV/cm (here, €, is the permittivity of the componentsdoes not exist. Thivgarithmicsingularities in-
vacuum. troduced by the branch points of higher-order polylogarithms

We consider the resummation of the divergent perturbafsee the indek in Eq.(19)] are difficult to approximate with

Using a computer algebra syst¢i®,71], the first 50 non-
nishing perturbative coefficients are evaluated for the
round state, and for the state with parabolic quantum num-
ersn;=3, n,=0, m=1, we evaluate the first 70 nonvan-
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TABLE I. Real and imaginary part of the energy pseudoeigenviajigg F) for the ground state of atomic
hydrogen(parabolic quantum numberg =0, n,=0, m=0).

F(a.u) Re Ego F) [0 F)
0.04 —0.503 771591 013 652(5) 3.892 699 990(1x 1076
0.06 —0.509 203 451 088(2) 5.150 70%5)x 10~ 4
0.08 —0.51756050(5) 4.53963(5)10 2
0.10 —0.527 4198(5) 1.4538(5)x 10 2
0.12 —0.537 334(5) 2.997(5)x10°?
0.16 —0.555 24(5) 7.131(5% 10 2
0.20 —0.5703(5) 1.212(5)x 107!
0.24 —0.5826(1) 1.767(5)x 1071
0.28 —0.5917(5) 2.32(3)x107*
0.32 —0.600(5) 2.92(3x107*
0.36 —0.604(5) 3.46(3x 107!
0.40 —0.608(5) 4.00(5x 107t

the rational functions employed in the construction of Pade TEgo( F=2.1393< 10" %)= —0.015860 468 198 9
approximants. A solution to the problem of approximating
the logarithmic singularities, based on the finite number of —i0.529048<10°°,
perturbative coefficients, would probably lead to further op-
timizimation of the rate of convergence of the transformedand
series. Within the current scheme of evaluation, the problem-
atic logarithmic singularities may be responsible, at least in TE.o(F=2.1393x 10" %)= —0.015 860 468 194 5
part, for certain numerical instabilities at higher transforma-
tion order, e.g., in the result faFE;o(F=2.1393<10 %) in —i0.529015¢10 °. (32
Eq. (32) below.
For the atomic state with quantum numbers=3, n, Method Il yields the following data,
=0, andm=1, the evaluation of the transformi&e,,(F)

defined in Eg.(11) (method ) and of the transforms T'EeA F=2.1393< 10~ %)= — 0.015 860 468 200 4
T En(F) defined in Eq.(26) (method 1) in transformation
order M=67,68,69,70 for a field strength ofF —i0.52904%10°°,

=2.1393x 10 4. Method | leads to the following results,
T'Egg(F=2.1393x 10 %)= —0.015 860 468 200 3

TEcAF=2.1393x 10 )= —0.015 860 468 199 2 —i0.529047% 10" °,

—i0.529048< 1078,
T'Ego( F=2.1393x 10" %)= —0.015 860 468 200 4

—i0.529047% 1076,
TEee(F=2.1393x 10" %)= —0.015 860 468 200 9

—i0.529047% 10 ¢, and
TABLE II. Real part and imaginary part of the energy pseudoeigenvaliygF) for the excited state

with parabolic quantum numbens =3, n,=0, m=1. The field strengtlr is given in atomic units. The data
are compared to Ref9]. Discrepancies are observed at large electric-field strength.

Real part of the resonance Egy(F) Autoionization decay width 3q4(F)
F (a.u) Ref.[9] Our results Ref[9] Our results

1.5560<10°4 —0.016 855237 2 —0.016 855 237 140 764(5) 0.42x10°° 0.421 683(5)X 10°°
1.9448<10°4 —0.0161793885 —0.016 179 388 250(5) 0.1438<10°%  0.143773(5x10°®

2.1393<10°% —0.015860468 —0.015 860 468 20(1) 0.105710°%  0.10509(5)<10 5
2.5282¢10°% —0.015269204 —0.015 269 293(1) 0.1756010 % 0.17639(5) 10
2.9172<10°% —0.014740243 —0.01474260(3) 0.9765110 % 0.999 96(9) 10 *
3.3061x10°4 —0.01424249 —0.01426@(3) 0.27853<10°% 0.2954(2)x 103
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T'E,o(F=2.1393x 10 %)= —0.015 860 468 203 3 F(2N+1/2) 4N 1)
~ T'(N)|1+0| =], (36)
—i0.529046<10 6. (33 I'(N+1)  2# () N

Numerical results obtained by resummation are presented iiis easy to explicitly establish the factorial divergence of the
Tables | and Il for a variety of field strengths and for the twoseries(see also p. 888 of Ref60]). The generating func-
atomic states under investigation here. Results are comparéi@nal in zero dimensions has been proposed as a paradig-
to the numerical calculatiof®]. which yields very accurate matic example for the divergence of perturbation theory in
data for all experimentally accessible electric-field strengthdligher order. It can be resummed easily to the nonperturba-
to date. In addition, it should be noticed that the inaccuracie§Ve result; in particular, it is manifestly Borel summable, and
at excessively large field of Reff9] have been pointed out NO singularities are present on the positive real axis.

by the same authors in Rdf27]. However, not all atomic Complications are introduced by degenerate minima. As a
states considered in RdD] were treated in the later inves- second example, we consider the modified generating func-
tigation[27]. Our data for the ground state indicated in Tabletional (compare with Eq(2.6) on p. 15 of Ref[73] and with

| are consistent with the numerical results obtained in RefEd. (40.1 on p. 854 of Ref[60]):

[27]. However, it should be noted that the later wa] L

leaves out the excited state with quantum numbers 3, , (" 2 2

n,=0, andm= 1 for which results are given here in Table II. Z'(®)= fx\/:exr{ 1= Vo) }

To the best of our knowledge, the numerical discrepancy

with Ref. [9] for the excited state with quantum numbers © dd

n,;=3, n,=0, andm=1 has not been recorded in the litera- f x\/—exl{— S®2+ g3 - 9‘134}-
ture. We do not claim here that it would have been impos-

sible to discern this discrepancy with the other methods that (37

have been devised for the theoretical LoSurdo-Stark prob-
lem. Notably, it appears likely that the approach from Ref.The expansion of the exponential in powers of the coupging
[27] or the method presented in RéL9] could easily be leads to a divergent asymptotic series,
generalized to the particular excited state considered here,
and that such a generalization would lead to very accurate _, 1 (> db .,
results. We merely include Table Il here in order to illustrate Z (‘D):NZO NI _w\/— vap (\/_‘133— —9‘1’4)
the utility of the rather unconventional resummation method
for the regime of large coupling, where even rather sophisti- N — 1
. . ; Or 2 (-1
cated numerical methods, which avoid the intricacies of a E 120 2 —_—
small-field perturbative expansion, have been shown to be N=0 *°°\/_ =0 F(2N=j+1)
problematid9,27]. We confirm that the numerical data given ON— g’
in Ref.[9] are accurate up to a field strengthfef&0.1 for x( ) Jgp?)2(N- J)( )
the ground state and up ®©~3x10 * for the excited f J
=5) state withn;=3, n,=0, andm=1. o 1)NCN+1/2(1)

=NZ02J? T(N—1/2) g"

oo

VI. MODEL EXAMPLE FOR DEGENERATE MINIMA

We consider the generating functional in a zero- 8"I'(2N+1/2)
dimensional theoryin this case, the usual path integral re- o Jal( N+1)
duces to an ordinary integpalFirst, we briefly consider the
d* theory in zero dimensiongsee Eqs(9-177 ff. in Ref.  whereC)(x) denotes a Gegenbau@itraspherical polyno-
[72]]; the generating functional reads mial. Note that terms of half-integer power @&ntail an odd

power of the field and vanish after integration. The first few

M

g", (38

* dd 1 terms of the asymptotic expansion read,
Z(cb):J ex - E<1>2—gc1>4 (34)

—eV2 Z'(®)=1+6g+210y°+13860g°+1 351 35@"
The strictly alternating divergent asymptotic expansion in +174594 426°+ 28 109 701 626°
powers ofg for g—0 reads,

+5 421156 741008’ + 1 218 404 977 539 753
o 4ANT(2N+1/2) +0(g°). (39
Z(‘D)Néom(—g)'\'- (35 g
T For the perturbative coefficients

On using the known asymptotics valid fbi— oo, which in 8NT(2N+1/2)
this case yield the “large-order” asymptotics of the pertur- N:(—’ (40)
bative coefficients, Jal(N+1)
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we establish the following asymptotics, TABLE Ill. Resummation of the asymptotic series for the gen-
erating functional of a zero-dimensional theory with degenerate
1 minima given in Eqs(38) and(39). We haveg=0.01. Results in
Cn~ —=N"182'T(N+1). (41)  the third column are obtained by the method indicated in (B4)
77‘/5 along the integration conto@, (see Ref[46]). The partial sums in

Due to the nonalternating character of the expanéaa, it the second column are obtained from the asymptotic sé3®s

is not Borel summable in the ordinary sense. Rather, it is

Borel summable in the distributional serg8,47. Here, we M Partial sum 72u(9=0.01)
present numerical evidence supporting the summability of 2 1.081 000 1.102 326
the divergent expansiofB89) based on a finite number of 3 1.094 860 1.096 141
perturbative coefficients. The final integration is carried out 4 1.108 373 1.089 875
along the contoulC, introduced in Ref[46] [see also Eq. 5 1.125832 1.090 695
(44) below]. The same contour has also been used for the 6 1.153 942 1.092 000
resummation of divergent perturbation series describing 7 1.208 154 1.091 596
renormalization grouganomalous dimensigny functions 8 1.329 994 1.091 389
[55]. As explained in Ref[46], the integration alondC,, 9 1.642 718 1.091 553
which is based on the mean value of the results obtained 10 2 545 239 1.091 545
above and below the real axis, leads teal final result if all 11 5.438 230 1.091503

perturbative coefficients are real. 12 1.5¢ 10% 1,091 525

In particular, the resummation of the divergent expansion 13 5'5< 108 1'091 527

(39) is accomplished as follows. We first define the Borel 14 2'% 1P 1'091 519

transform of the generating functional fsee Eq(4) in Ref. ' ‘

[58] and the discussion after E(P)] 15 9.510° 1.091523

16 4.5<10° 1.091523

- Cn 17 2.2x10* 1.091521

Zi(2)=BZ2":2]1= > mz“. (42) 18 1.2¢10° 1.091 522

N=o 1'( 19 6.9< 10° 1.091522

Padeapproximants to this Borel transform are evaluated, 20 4.1x10° 1.091522
exact 1.091 522 1.091522

Pu(2)=[IM2)/[(M+1)/2]]7,(2), (43

where[x] denotes the largest positive integer smaller han  we have also investigated the resummation of the diver-
We then evaluate thémodified Borel integral along the gent serieg39) via a combination of a conformal mapping
integration contoulC, introduced in Ref[46]; specifically, and Padeaproximants in the conformal variable. The situa-

we define the transforrdZy,(g) tion is analogous to the LoSurdo-Stark effect: Results are
consistent with those presented in Table Il obtained by the
7ZM(g)=J dt exp(—t)Py(gb). (44)  “pure” Borel-Padeand in this case slightly more accurate.
Co The radius of convergence of the Borel transfdgfj{z) de-

fined in Eq.(42) is s=1/32[cf. Eq. (17) for the LoSurdo-

In this case, poles above and below the real axis must b§iark effect, and the appropriate conformal mapping in this
considered, and the final result involves no imaginary part.ase reads

The particular case aj=0.01 is considered. Values for the
partial sums of the perturbation seri€39) and the trans- 4y
forms defined in Eq(44) are shown in Table Ill. The trans- w=

forms exhibit apparent convergence to six decimal places in (1+y)?
20th order, whereas the partial sums of the perturbation se- .

ries diverge. Between the second and fourth terms of th&Cl EQ- (22]. The inverse reads
perturbation seriegthe fourth term constitutes the minimal

(45

term), the partial sums provide approximations to the exact y(w)= 1_— vi-w
result. It might seem surprising that the minimal term in the 1++v1-w

perturbative expansion is reached already in fourth order,

although the coupling assumes the small vaee0.01. This  [cf. Eq. (28)]. The conformal mappin@g45 maps the com-
behavior immediately follows from the large geometric fac-plexw plane with a cut along (%) unto the unit circle in the

tor in Eq. (41) which leads to a “resultative coupling complexy plane. While the zero-dimensional model example
strength parameter” ofg,.—0.32. “Nonperturbative ef- given in Eq.(37) does not exhibit all problematic features of
fects” of the order of exp{1/g,ed provide a fundamental degenerate anharmonic double-well oscillators, certain
limit to the accuracy obtainable by optimal truncation of theanalogies can be established; these comprise in particular the
perturbation series; this is consistent with the numerical dataeed to evaluate the mean value of Borel transforms above
in Table III. and below the real axissee Appendix R
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VII. CONCLUSION merical results by resummation than by optimal truncation of
the perturbation seriesee also Ref.46]). In a strong field,

We discuss the resummation of the divergent perturbatloi is possible to obtain physically correct results by resum-

ser?es of the. L_oSurdo—Star.k effegt, and of a di\{ergent modelyation even though the perturbation series diverges strongly
series describing a zero-dimensional theory with degenerat@ee the discussion in Sec. V and the data in Tables I, II, and

minima, using two methods. Method I, which uses a varianfj) gy resummation, the perturbation series, which is inher-
of the contour-improved Borel-Padechnique introduced in ently a weak-coupling expansion, can be given a physical
Ref.[25], is described in Sec. lll. The integration contour is jnterpretation even in situations where the coupling is large.
modified so that the additional terms that have to be added tReturning to the analogy to quantum field theory, one might
the principal value of the Laplace-Borel integral are clearlybe tempted to suggest that physically complete results are
identified[see also the discussion in RE6] and Eq.(12)].  obtained after regularization, renormalizationand

Use is made of the leading infrared renormalon pole. Methodesummation.

II, which comprises an analytic continuation by conformal

mapping with additional improvement by Pagleproximants ACKNOWLEDGMENTS

in the conformal variablgsee Eq(25)], is discussed in Sec.
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Refs.[49,50 which has been shown to accelerate ConverZinn.-Justin for many insightful discussions, .and G.. Soff for
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conformal mapping of the Borel planeWe find thatboth SO P. J. Mohr, E. Caliceti, E. J. Weniger, J. Sims, Interi,
methods accomplish a resummation of the divergent pertu@nd S. Roether are also gratefully acknowledged. The author

bation serieg1) for the LoSurdo-Stark effect, and the decay Would like to thank the Deutscher Akademischer Aus-
width of the quasistationary states is obtairiede Sec. V. tauschdiensDAAD) for organizational support, and he
Numerical results are given in Tables | angl A main result would like to thank the Laboratoire Kastler-Brossel, where

of the current paper is the demonstration of the analogou®1@or parts of this work were performed, and the National
mathematical structuréloubly cut Borel plangof the per- Institute for Standards and Technology for their kind hospi-

turbative expansion for the LoSurdo-Stark effect and perturf@/ity-

bative expansions in quantum chromodynangresormalon

theory[74]). The series investigated here exhibit a nontrivial APPENDIX A: DIVERGENT PERTURBATION SERIES IN
singularity structure in the Borel plane. In particular, we en- QUANTUM FIELD THEORY

counter poles and branch cuts on the positive real axis. We brieflv indi f in di b
In quantum electrodynamics, we encounter nonperturba- V& Priefly indicate aspects of certain divergent perturba-

tive effects in the electron-positron pair-production ampli—tlon sefies in quantum field t_heory, In particular, the quantum
tude in a background electric field2,75—77. The vacuum- electrodynamic(QED) effective action and the associated

to-vacuum amplitude acquires an imaginary part, Whosé)air-production amplitgde for electron-positron pairs. We
magnitude is related to the production rate per space-timHS€ natural units in which the reduced Planck’s constant, the

volume of fermion-antifermion pairs. This nonperturbative,lPerm'tt“"ty of the Vac;’]“m' Iand ':Che speed of I'Q_ﬁ" f'EIS'
imaginary contribution can be inferred from the perturbative’6€ Vacuumassume the value of unityi= eo=c=1). The
one-loop QED effective action for an arbitrary electric and

expansion of the effective action by contour-improved re_magnetic field per space-time volume reatlss result can
summationsee Ref[46] and the discussion in Appendix A ' ' X .
r [46] PP ) be found, e.g., in Eq4-123 of Ref.[72], upon inclusion of

Nonperturbative effects typically involve a nonanalytic fac- o -
tor of exp(1/g) whereg is an appropriate coupling param- &0 additional counterterm; see also R¢#%,81)

eter for the physical system under investigationthe case

of the LoSurdo-Stark effect, the coupling parameter is theS: im — i iw*ﬂﬁe_(mg_if)s

electric-field strengtt~). The existence of nonperturbative gm2lo &

contributions is intimately linked with the failure of the Car-

leman criterion for a particular perturbation serigge for

example Ref[78], Theorems XII.17 and XII.18 and the defi- X

nition on p. 43 in Ref[79], p. 410 in Ref.[41], or the

elucidating discussion in Ref80]). The Carleman criterion (A1)

determines, roughly speaking, if nonanalytic contributions

exist for a given effect that is described by a specified perThe specification of the infinitesimal quantityis necessary,

turbation series. strictly speaking, in order to avoid the singularities of the
The current paper illustrates the utility of resummationcoth function along the imaginary axis. Byandb we de-

methods in those cases where perturbation theory break¥te thesecular invariants

down at large coupling. As explained in Sec. V, even in

situations where the perturbation series diverges strongly, it a=V /]-‘2+g2+]-‘2

can still be used to obtain meaningful physical results if it is
combined with a suitable resummation method. In a rela-
tively weak field, it is possible to obtain more accurate nu- b= VVF2+G2- F?,
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F=ZFMF,, =5 (BB,

G= %F“V(* F).,=—E-B.
If the relativistic invarianiG is positive, then it is possible to
transform to a Lorentz frame in whidh andB are antipar-
allel. In the caseG<O0, it is possible to choose a Lorentz
frame in whichE andB areparallel. Irrespective of the sign
of G, we have in the specified frame

a=|B| and b=|E|.

PHYSICAL REVIEW /4 013403

contributions in Table | of Refl46] (the sign change of the
imaginary part, according to the choice of the integration
contour, has been discussed at length in RE]). The mag-
nitude of the imaginary part yields the pair-production am-
plitude. The contou€ , ; is used in the current investigation
(and in the context of the related brief discussion in Ref.
[46]) for the calculation of nonperturbative imaginary ef-
fects, i.e., the autoionization decay width of atomic states
(LoSurdo-Stark effegt

The divergent asymptotic perturbation series for the cases
of the magnetic and electric field, generated by the expansion
of the results in Eq9A3) and(A4), can be found in Eq6)
and (7) of Refs.[45] (B field, alternating series, coupling

Then, in the special Lorentz frame, the effective action readparametegB:eZBZ/mg) and in Eqs(8) and(9) of Ref.[46]

[we keep all infinitesimal contributioms

1 [(ie+nds

2 .
S= lim —— —e (Meigs
ot 87T2 0 53
€,7—
x| (es)?|B||E|coth(e|B|s)cot(e|E|s)

(A2)

- %(es)Z(BZ—EZ)— 1|.

(E field, nonalternating series, coupling parametgt
=e?E?/m). The singularity structure of the Borel transform
of the series for the magnetic-field case has been determined
in Ref. [58] as a sequence of singularities corresponding to
alternating, factorially divergent componerhese corre-
spond in their mathematical structure to the so-called ultra-
violet renormalons in quantum chromodynamicBhe per-
turbation series for the LoSurdo-Stark effect contains both
nonalternating and alternating components so that its resum-
mation represents a comparatively more interesting task. The
same applies to the more complex perturbation series calcu-

The particular cases of a pure magnetic and a pure electriated in Ref.[82] for the renormalization group function,

field follow from the above integral representation by con-

sidering appropriate limits |E|—0 and |B|—0, respec-

whose resummation—at strong coupling—has been dis-
cussed in Refd55,87 (in this case, there is no imaginary

tively). These particular cases are of some interest becaug@rt involved. We are not aware of arg/ priori reasoning to
they can be used as model series for divergent alternatingetermine the absence or presence of imaginary contribu-

and nonalternating asymptotic perturbation ser[d<—
46,58. In the case of a pure magnetic filda=|B|, the result
reads(see, e.g., Eq5) in Ref.[45])

tions in a particular physical problefeee also the discussion
in Refs.[83]).

APPENDIX B: BOREL SUMMABILITY IN PROBLEMATIC

2p2 2
e“B“ (=ds 1 s m
Sg=— — —2[ coths— s 5] ex;{ - a;s) , CASES
° i (A3) Consider the one-dimensional double-well Hamiltonian
where m, is the mass of the electron. This result can be H(g)=p?+x3(1—gx)>. (B1)

expressed as a divergent asymptotic perturbation series in the

coupling parametegg=€?B?/mj . For the pure electric field,
the result reads

S_eZEZdes " 1 s (mﬁ )
E—8W20§COS§§GX Ie—EIGS

e?E? [=+ie ds{ t 1 . s} '{ mZ
=— —{cots— =+ =fexg — —s
8772 O+ie 32 S 3 ek

(A4)

[Eq. (7) of Ref. [46] and the expression before Ed.0) of
Ref. [45] contain typographical errofsWe take the oppor-
tunity to supplement the proportionality factor for the ex-
pression in Eq(7) of Ref.[46] to yield the effective action
per space-time volume element; it read&?/(87?). As evi-

For g=0, the Hamiltonian describes harmonic oscillations.
For g>0, we have degenerate minima of the potentiak at
=0 and atx=1/g, and to each eigenvalue of the unperturbed
harmonic oscillator, we have to associate two eigenvalues
belonging to opposite-parity wave functions with respect to
x=1/(2g). The difference of the two eigenvalues is nonana-
lytic in g. Two different approaches have been developed to
circumvent this problem and to allow for a treatment based
on the resummation of perturbation series.

The first approach60] is based essentially on generalized
Bohr-Sommerfeld quantization formulas and leads to an ex-
pansion of the ground-state energy eigenvalue in terms of

©

o1
E(g)=2 E%'+ > ——e 1%

dent from the Eq(A4), the integration of the Borel-Pade n=0 n=1ymg
transform for the electric-field case should be carried out n—1 o
along the contou€ , ; shown here in Fig. 1. When this con- > In(=2/a) 1> EMy! B2
tour is used, then a sign change results for the imaginary go[ (—209)] |20 kg B2
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where the upper index of the coefficients labels the multi- and wherey=(g) are test functionswith a definite parity
instanton contributiongthe zero-instanton contribution cor- with respect to 1/(8). The closed contoui’ has radius
responds to the “usual” perturbative expansiohe odd-  unity; it is chosen to encircle one and only one shifted reso-
instanton contributions lead to a separation of the groundiance of the perturbed oscillator, while the test functions
state and the first excited state that have opposﬂe parity bigelect the state with the desired parity. Specifically, we have
the same naive perturbation seriB&_,E(Vg'. The series ¥~ (9)=P~(9)# wherey is the eigenvector of the unper-
3% ,E(g' is nonalternating and therefore not Borel sum- turbed hamiltonian, and the projection operators are

mable; however, possible imaginary contributions must be 1

suppressed for physical reasons because the ground-state en- [PE(@)¢](x)= S [P Y(Lig—x)]. (BS)

ergy is real. The suppression can be enforced explicitly by

defining the sum as the arithmetic mean of the values obThe functionsF; i(9,7) may be expressed as asymptotic se-

tained above and below the real axis, or it can be motivateges,

by the following observatio60]: We define the sum of

>”_,E(%g' for negativeg and carry out an analytic continu-

ation to positiveg; this leads to an imaginary part, which in

this case, cancels with the imaginary part generated by the

In(—2/g) coming from the two-instanton contributiom (  The authors of Refs{84 85 define®f(g, ) to be the Borel

=2,k=1). Note that for the model example discussed insum of = _ 0d, WYY for g, |y|, and arg/ small and positive,

Sec. VI, only one alternative is feasible—the explicit and they estabhsh a corresponding reIatlonthé(g v) and

cancellatlon—because no additional terms are present th&ﬁ 0b ny According to (unnumberefl equations on p.

could lead to cancellations. 626 of Ref.[84], the final result in this case is given in terms
The second approack84,85 involves contour integra- of the mean values—each obtained above and below the real

tions and makes use of projection operators in order to “seaxis—of the two Borel sum@R andd)'

lect” states of specified paritfthis approach has been shown

to be applicable as well to the problematic Herbst-Simon

M
F;(g,y>=N§0[aj,N+ibj,N<g>]yN+owM“>. (B6)

— IR Ry 1
hamiltonian[86] that involves a vanishing perturbation se- ReFj(g.7)= z[q)J (9.7)+®(g.7)]
ries). Specifically, we can write the perturbed energy eigen- )
alue as I =
o +5l®)(gy-Pjgy]. (B
£ (g REFL(0.9) - _
(9)= ReFy(g,9)’ (B3) where z denotes the complex conjugate mf The value
ReF;(g,9) is then determined bgunique analytic continu-
where ation y—g from ReF;(g,7y). In our simplified model ex-
1 ample, we havé; \(g) =0 (all perturbative coefficients are
F(0,v)= b dz 2(ut rea). The need to evaluate the arithmetic mean of Borel
i(@.7) 2mi ﬁr (W9l H()’) ZW (@), sums above and below the real axis appears to arise naturally

(B4) in the context of double-well problems.
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