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Resummation of the divergent perturbation series for a hydrogen atom in an electric field
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We consider the resummation of the perturbation series describing the energy displacement of a hydrogenic
bound state in an electric field~known as the Stark effect or the LoSurdo-Stark effect!, which constitutes a
divergent formal power series in the electric-field strength. The perturbation series exhibits a rich singularity
structure in the Borel plane. Resummation methods are presented that appear to lead to consistent results even
in problematic cases where isolated singularities or branch cuts are present on the positive and negative real
axis in the Borel plane. Two resummation prescriptions are compared:~i! a variant of the Borel-Pade´ resum-
mation method, with an additional improvement due to utilization of the leading renormalon poles, and~ii ! a
contour-improved combination of the Borel method with an analytic continuation by conformal mapping, and
Padéapproximations in the conformal variable. The singularity structure in the case of the LoSurdo-Stark
effect in the complex Borel plane is shown to be similar to~divergent! perturbative expansions in quantum
chromodynamics.

DOI: 10.1103/PhysRevA.64.013403 PACS number~s!: 32.60.1i, 32.70.Jz, 11.15.Bt, 11.10.Jj

I. INTRODUCTION

Consider the energy shift of the ground state of atomic
hydrogen in an electric field of field strengthF that we as-
sume to lie along thez axis: the energy displacement can be
expressed in perturbation theory as a formal power series.
The first nonvanishing perturbation@in atomic units, see also
Eq. ~29! below# is the second-order effect

F2 (
mÞ1S

^f1Suzufm&^fmuzuf1S&
E1S2Em

,

where the sum overm runs over the entire spectrum, includ-
ing the continuum, but excluding the 1S ground state, and
Em is the nonrelativistic~Schrödinger! energy of themth
state. A well known, but perhaps surprising result says that
the coefficients of the terms of orderF4, F6, F8, . . . grow
so rapidly that the series inF ultimately diverges, irrespec-
tive of how small the field strength. The convergence radius
of the factorially divergent perturbation series is zero. The
resummation of the divergent series is problematic in the
considered case, because the Borel transform, from which
the physically correct, finite result is obtained by evaluating
the Laplace-Borel integral—see Eq.~11! in Sec. III below—
exhibits a rich singularity structure in the complex plane.

The purpose of this paper is to present numerical evidence
that divergent perturbation series whose Borel transform ex-
hibits a rich singularity structure in the complex plane, can
be resummed to the complete, physically relevant result. The
resummation methods use as input data only a finite number
of perturbative coefficients. Problematic singularities on the
positive real axis in the Borel plane are treated by appropri-
ate integration prescriptions. In particular, it is shown that

the Borel transform of the divergent perturbation series for
the LoSurdo-Stark effect involves two cuts in the Borel
plane, generated essentially by the divergent alternating and
nonalternating subcomponents of the perturbation series.
This singularity structure is also expected of the~divergent!
perturbation series in quantum field theory, notably quantum
chromodynamics~in this case, the alternating and nonalter-
nating factorially divergent components correspond in their
mathematical structure to the ultraviolet and infrared
renormalons1!.

We present results that suggest that the integration con-
tours and resummation techniques discussed here may be of
relevance, at least in part, to theories with degenerate
minima. As a byproduct of these investigations, numerical
pseudoeigenvalues are obtained for the LoSurdo-Stark ef-
fect; selected field strengths and atomic states are considered.

The LoSurdo-Stark effect and its associated divergent
perturbative expansion, including the the nonperturbative,
nonanalytic imaginary contributions, have attracted consider-
able attention, both theoretically and experimentally@1–34#.
Experiments have been performed in field strengths up to a
couple of MV/cm@35–38#. One might be tempted to say that
the autoionization decay width could be interpreted as a
paradigmatic example for a nonperturbative effect that ex-
hibits fundamental limitations to the validity of perturbation
theory ~unless the perturbative expansion is combined with

*Electronic address: ulj@nist.gov

1The term ‘‘renormalon,’’ as now commonly used in particle
physics and large-order perturbation theory, stands for a factorially
divergent subcomponent of a perturbation series. In quantum field
theory, this divergent subcomponent is associated with a specific
class of Feynman diagrams~for example, so-called ‘‘bubble dia-
grams’’!. For a comprehensive discussion, see M. Beneke, Phys.
Rep.317, 1 ~1999! and references therein. ‘‘Bubble diagrams’’ are
illustrated in Fig. 1ibid.
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resummation methods!. We briefly summarize here: The
Rayleigh-Schro¨dinger perturbation series for the LoSurdo-
Stark effect@39,40# can be formulated to arbitrarily high or-
der @1#. The perturbative coefficients grow factorially in ab-
solute magnitude@2#, and the radius of convergence of the
perturbation series about the origin is zero. The perturbation
series is a divergent, asymptotic expansion in the electric-
field strengthF, i.e., about zero electric field. This means that
the perturbative terms at small coupling first decrease in ab-
solute magnitude up to some minimal term. After passing
through the minimal term, the perturbative terms increase
again in magnitude, and the series ultimately diverges.

By the use of aresummationmethod, it is possible to
assign a finite value to an otherwise divergent series, and
various applications of resummation methods in mathematics
and physics have been given, e.g., in Refs.@41–45#. When a
divergent series is resummed, the superficial precision limit
set by the minimal term can be overcome, and more accurate
results can be obtained as compared to the optimal truncation
of the perturbation series~see also the numerical results in
the tables of Ref.@46#!. The divergent perturbation series of
the LoSurdo-Stark effect has both alternating and nonalter-
nating components~as explained in Sec. II below!. The re-
summation of nonalternating series or of a series that have a
leading or subleading divergent nonalternating component,
corresponds to a resummation ‘‘on the cut’’ in the complex
plane@41,42#.

Rather mathematically motivated investigations regarding
the Borel summability of the divergent perturbation series
for the LoSurdo-Stark effect were performed in Refs.
@12,47#, and it was established that the perturbation series of
the LoSurdo-Stark effect is Borel summable in the distribu-
tional sense~for the definition of ‘‘distributional Borel sum-
mability’’ we refer to Ref. @48#!. Here, to supplement the
mathematically motivated investigations, we consider the
calculation of transforms of the divergent series, which use
as input data only a finite number of perturbative coefficients
and exhibit apparent convergence to the complete, physically
relevant result.

In the remarkable investigation@25#, whose significance
may not have been sufficiently noticed in the field of large-
order perturbation theory, it was not only shown that it is
possible to perform the required analytic continuation of the
Borel transform beyond its radius of convergence by em-
ploying Pade´ approximants, but that it is also possible to
reconstruct the full physical result, including the imaginary
contribution that corresponds to the autoionization decay
width, by integration in the complex plane.

In Sec. II, we discuss the singularity structure of the Borel
transform in the complex plane. The structure of a doubly cut
plane has been postulated for quantum chromodynamic per-
turbation series@49,50#, and this structure has been exploited
to devise resummation prescriptions based on conformal
mappings@49–55#. Here, we present results that suggest that
the convergence of the transforms obtained by conformal
mapping can be improved if Pade´ approximants in the con-
formal variable are used~see also Ref.@55#!. We also discuss
improvements of the ‘‘pure’’ Borel-Pade´ method~these ad-
ditional improvements take advantage of leading renormalon

poles!. Also, in comparison to the investigation@25#, we use
here a slightly modified, but equivalent integration contour
for the evaluation of the generalized Borel integral~see Ref.
@46# and Sec. III below!. Our version of the integration con-
tour exhibits the additional terms that have to be added to the
otherwise recommended principal-value prescription
@49,50,56#.

As stressed above, it has been another main motivation
for the current investigation to establish the singularity struc-
ture of the Borel transform in the complex plane, and to
demonstrate the analogy of the singularity structure of the
perturbation series for the LoSurdo-Stark effect to quantum
chromodynamic perturbation series. We also consider a di-
vergent perturbation series generated by a model problem for
theories with degenerate minima. In the particular model
case discussed here, a perturbation series with real coeffi-
cients is summed to areal result—in contrast to the
LoSurdo-Stark effect, there is no imaginary part involved in
this case. One of the three alternative integration contours
introduced in Ref.@46# has to be employed.

This paper is organized as follows: In Sec. II, we give a
brief outline of the perturbative expansion for the LoSurdo-
Stark effect. In Secs. III and IV, we describe the resumma-
tion methods that are used to obtain the numerical results
presented in Sec. V. In Sec. VI, we consider theories with
degenerate minima. We conclude with a summary of the
results in Sec. VII. Finally, the connection of the current
paper to quantum-field-theoretic perturbation series and to
double-well oscillators are discussed in the Appendixes A
and B.

II. PERTURBATION SERIES FOR THE LoSURDO-STARK
EFFECT

In the presence of an electric field, the SO(4) symmetry
of the hydrogen atom is broken, and parabolic quantum num-
bers n1 , n2, and m are used for the classification of the
atomic states@57#. For the Stark effect, the perturbative ex-
pansion of the energy eigenvalueE(n1 ,n2 ,m,F) reads†see
Eq. ~59! of Ref. @1#‡,

E~n1 ,n2 ,m,F !; (
N50

`

En1n2m
(N) FN, ~1!

whereF is the electric-field strength. ForN→`, the leading
large-order factorial asymptotics of the perturbative coeffi-
cients have been derived in Ref.@16# as

En1n2m
(N) ;An1n2m

(N) 1~21!NAn2n1m
(N) , N→`, ~2!

whereAninjm
(N) is given as an asymptotic series,

Aninjm
(N) ;K~ni ,nj ,m,N!3 (

k50

`

ak
ninjm~2 nj1m1N2k!!.

~3!

The quantitiesak
ninjm are constants. TheK coefficients in Eq.

~3! are given by
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K~ni ,nj ,m,N!

52@2pn3nj ! ~nj1m!! #21

3exp$3~ni2nj !%6
2 nj 1m11~3n3/2!N. ~4!

Here, the principal quantum numbern as a function of the
parabolic quantum numbersn1 , n2, andm is given by†see
Eq. ~65! in Ref. @1#‡

n5n11n21umu11. ~5!

According to Eq.~2!, the perturbative coefficientsEn1n2m
(N) ,

for large-orderN→` of perturbation theory, can be written
as a sum of a nonalternating factorially divergent series@first
term in Eq. ~2!# and of an alternating factorially divergent
series@second term in Eq.~2!#. Because theak

ninjm in Eq. ~3!
are multiplied by the factorial (2ni1m1N2k)!, we infer
that for large perturbation-theory orderN, the term related to
the a0

ninjm coefficient (k50) dominates. Terms withk>1
are suppressed in relation to the leading term by a relative
factor of 1/Nk according to the asymptotics

~2 nj1m1N2k!!

~2 nj1m1N!!
;

1

Nk F11OS 1

ND G ~6!

for N→`. The leading (k50) coefficient has been evalu-
ated in Ref.@2# as

a0
ninjm51. ~7!

According to Eqs.~2!, ~3!, and ~7!, for states withn1,n2,
the nonalternating component of the perturbation series
dominates in large order of perturbation theory, whereas for
states withn1.n2, the alternating component is dominant as
N→`. For states withn15n2, the odd-N perturbative coef-
ficients vanish@16#, and the even-N coefficients necessarily
have the same sign in large order@see Eq.~2!#. According to
Eq. ~2!, there are subleading divergent nonalternating contri-
butions for states withn1.n2, and there exist subleading
divergent alternating contributions for states withn1,n2.
This complicates the resummation of the perturbation series.

III. BOREL-PADE´ RESUMMATION

The resummation of the perturbation series~1! by a com-
bination of the Borel transformation and Pade´ approximants
proceeds as follows. First we define the parameter

l52 max~n1 ,n2!1m11. ~8!

The large-order growth of the perturbative coefficients@see
Eqs.~2! and ~3!# suggests the definition of the~generalized!
Borel transform†see Eq.~4! in Ref. @58#‡

EB~z![EB~n1 ,n2 ,m,z!5B (1,l)@E~n1 ,n2 ,m!;z#

5 (
N50

` En1n2m
(N)

G~N1l!
zN, ~9!

where we consider the argumentz of EB(z) as a complex
variable andl is defined in Eq.~8!. The additive constant~in
this casel) in the argument of the Gamma function is cho-
sen in accordance with the notion of an ‘‘asymptotically im-
proved’’ resummation~see also Ref.@58#!. It is observed that
the additive constantl can be shifted by a small integer
without affecting the convergence of the Borel resummed
series. Because the perturbative coefficientsEn1n2m

(N) diverge

factorially in absolute magnitude, the Borel transformEB(z)
has a finite radius of convergence about the origin. The
evaluation of the~generalized! Laplace-Borel integral@see
Eq. ~11! below# therefore requires an analytic continuation of
EB(z) beyond the radius of convergence. The ‘‘classical’’
Borel integral is performed in thez range zP(0,̀ ), i.e.,
along the positive real axis†see, e.g., Eqs.~8.2.3! and~8.2.4!
of Ref. @41#‡. It has been suggested in@56# that the analytic
continuation of Eq.~9! into regions whereF retains a non-
vanishing, albeit infinitesimal, imaginary part can be
achieved by evaluating Pade´ approximants. Using the first
M11 terms in the power expansion of the Borel transform
EB(z), we construct the Pade´ approximant~we follow the
notation of Ref.@43#!

PM~z!5@ vM /2b /v~M11!/2b#EB
~z!, ~10!

wherevxb denotes the largest positive integer smaller thanx.
We then evaluate the~modified! Borel integral along the
integration contourC11 shown in Fig. 1 in order to construct
the transformTEM(F) where

TEM~F !5E
C11

dt tl21 exp~2t !PM~F t !. ~11!

The successive evaluation of transformsTEM(F) in increas-
ing transformation orderM is performed, and the apparent
convergence of the transforms is examined. This procedure
is illustrated in Tables I and II of Ref.@46#. In the current
evaluation, a slightly modified scheme is used for selecting
the poles in the upper-right quadrant of the complex plane as
compared to Ref.@46#.

FIG. 1. Integration contourC11 for the evaluation of the gen-
eralized Borel integral defined in Eq.~11!. Poles displaced from the
real axis are evaluated as full poles, whereas those poles that lie on
the real axis are treated as half poles.
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The contourC11 is supposed to encircle all poles att
5zi in the upper-right quadrant of the complex plane with
argzi,p/4 in the mathematically negative sense. That is to
say, the contribution of all poleszi with Rezi.0, Imzi.0
and Rezi.Im zi ,

22p i (
i

Res
t5zi

tl21 exp~2t !PM~Ft !,

is added to the principal value~P.V.! of the integral~11!
carried out in the rangetP(0,̀ ). Note the further restriction
(Im zi,Rezi or equivalently argzi,p/4) with regard to the
selection of poles in comparison to the previous investigation
@46#. In practical calculations, this modification is observed
not to affect the numerical values of the transformsTEM(F)
defined in Eq.~11! in higher transformation orderM>10
@i.e., for largeM, see also Eq.~14! below#, because the poles
are observed to cluster near the real axis in higher transfor-
mation order, and so the contribution of poles withp/4
,argzi,p/2 gradually vanishes. We have,

TEM~F !5PE
0

`

dt tl21 exp~2t !PM~F t !

22p i (
i

Res
t5zi

tl21 exp~2t !PM~Ft !. ~12!

The principal-value prescription@first term in Eq.~12!# for
the evaluation of the Laplace-Borel integral has been recom-
mended in Refs.@56,59#. This prescription leads to a real
~rather than complex! result for the energy shift and cannot
account for the width of the quasistationary state. The addi-
tional pole contributions@second term in Eq.~12!# are re-
sponsible for complex-valued~imaginary! corrections that
lead, in particular, to the decay width.

By contour integration~Cauchy Theorem! and Jordan’s
Lemma, one can show that the result obtained alongC11 is
equivalent to an integration along the straight line with
argz5p/4,

TEM~F !5clE
0

`

dt tl21exp~2c t!PM~Fct!, ~13!

wherec5exp(ip/4). This contour has been used in Ref.@25#
~see also p. 815 in Ref.@60#!. The factor exp(2c t) and the
asymptotic behavior of the Pade´ approximantPM(F c t) as
t→` together ensure that the integrand falls off sufficiently
rapidly so that the Cauchy Theorem and Jordan’s Lemma
can be applied to show the equivalence of the representations
~12! and ~13!.

The representation~13! illustrates the fact that the integra-
tion in the complex plane alongC11 analytically continues
the resummed result in those cases where the evaluation of
the standard Laplace-Borel integral is not feasible due to
poles on the real axis. The representations~11! and ~12!
serve to clarify the role of the additional terms that have to
be added to the result obtained by the principal-value pre-
scription in order to obtain the full physical result, including
the nonperturbative, nonanalytic contributions. Note that, as
stressed in Ref.@46#, the pole contributions in general do not

only modify the imaginary, but also the real part of the re-
summed value for the perturbation series.

Formally, the limit of the sequence of theTEM(F) asM
→`, provided it exists, yields the nonperturbative result in-
ferred from the perturbative expansion~1!,

lim
M→`

TEM~F !5E~F ![E~n1 ,n2 ,m,F !. ~14!

Because the contourC11 shown in Fig. 1 extends into the
complex plane, the transformsTEM(F) acquire an imaginary
part even though the perturbative coefficients in Eq.~1! are
real.

In the context of numerical analysis, the concept of incre-
dulity @61# may be used for the analysis of the convergence
of the transformsTEM(F) of increasing orderM. If a certain
number of subsequent transforms exhibit apparent numerical
convergence within a specified relative accuracy, then the
calculation of transforms is stopped, and the result of the last
calculated transformation is taken as the numerical limit of
the series under investigation. It has been observed in Refs.
@46,56# that for a number of physically relevant perturbation
series, the apparent numerical convergence of the transforms
~11!, with increasing transformation order, leads to the
physically correct results.

It is observed that the rate of convergence of the trans-
forms ~11! can be enhanced if instead of the unmodified
Padéapproximants~10! leading renormalon poles are explic-
itly used for the construction of modified approximants. For
the ground state, this entails the following replacement in Eq.
~11!:

PM~z!→PM8 ~z!,

where

PM8 ~z!5
1

12z2 F V M14

2 B Y V M23

2 B G
E

B8 (z)

~z!, ~15!

where EB8 (z)5(12z2)EB(z). For the excited state with
quantum numbersn153, n250, andm51, we replace

PM~z!→PM9 ~z!,

where

PM9 ~z!5
1

12z F V M12

2 B Y V M21

2 B G
E

B9
~z!, ~16!

whereEB9 (z)5(12z2)EB(z). The resummation method by a
combination of Borel and Pade´ techniques—current
section—will be referred to as ‘‘method I’’ throughout the
current paper.

IV. DOUBLY-CUT BOREL PLANE AND RESUMMATION
BY CONFORMAL MAPPING

According to Eqs.~2! and~3!, the perturbative coefficient
En1n2m

(N) , for largeN, can be written as the sum of an alter-

nating and of a nonalternating divergent series. In view of
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Eqs. ~4! and ~7!, we conclude that the series defined in Eq.
~9!,

EB~z!5 (
N50

` En1n2m
(N)

G~N1l!
zN,

has a radius of convergence

s5
2

3n3
~17!

about the origin, wheren is the principal quantum number
@see Eq.~5!#. Therefore, the function

EB~w!5 (
N50

` En1n2m
(N) sN

G~N1l!
wN, ~18!

has a unit radius of convergence about the origin. It is nota
priori obvious if the pointsw521 and w511 represent
isolated singularities or branch points. The asymptotic prop-
erties~2! and~3! together with Eq.~6! suggest that the points
w521 andw511 do not constitute poles of finite order.
We observe that the leading factorial growth of the perturba-
tive coefficients in large perturbation orderN is divided out
in the Borel transform~18!, which is a sum overN. The
perturbative coefficientEn1n2m

(N) can be written as an

asymptotic series overk @see Eq.~3!#. We interchange the
order of the summations overN and k, we use Eq.~6! and
take advantage of the identity

(
N50

`
wN

Nk
5Li k~w!. ~19!

The Borel transformEB(w) can then be written as a sum over
terms of the formTk(w) where fork→`,

Tk~w!;C~ni ,nj ,m!ak
ninjm Li k~w!. ~20!

The coefficientC(ni ,nj ,m) is given by

C~ni ,nj ,m!52@2pn3nj ! ~nj1m!! #21

3exp$3 ~ni2nj !%6
2 nj 1m11. ~21!

These considerations suggest that the pointsw521 and
w511 represent essential singularities~in this case, branch
points! of the Borel transformEB(w) defined in Eq.~18!. For
the analytic continuation ofEB(w) by conformal mapping,
we write w as

w5
2y

11y2
, ~22!

~this conformal mapping preserves the origin of the complex
plane!. Here, we refer tow as the Borel variable, and we call
y the conformal variable. We then express theM th partial
sum of Eq.~18! as

E B
M~w!5 (

N50

M En1n2m
(N) sN

G~N1l!
wN5 (

N50

M

CNyN1O~yM11!,

~23!

where the coefficientsCN are uniquely determined†see, e.g.,
Eqs.~36! and~37! of Ref. @49#‡. We define the partial sum of
the Borel transform, re-expanded in terms of the conformal
variabley, as

E8B
M~y!5 (

N50

M

CNyN. ~24!

We then evaluate~lower-diagonal! Padéapproximants to the
function E8B

M(y),

EB9
M~y!5@ vM /2b /@ v~M11!/2b#E8B

M~y!. ~25!

We define the following transforms,

T9EM~F !5slE
C11

dw wl21 exp~2w!E9B
M@y~w!#.

~26!

At increasingM, the limit asM→`, provided it exists, is
then again assumed to represent the complete, physically rel-
evant solution,

E~F !5 lim
M→`

T9EM~F !. ~27!

We do not consider the question of the existence of this limit
here ~for an outline of questions related to these issues we
refer to Ref.@50#; potential problems at excessively strong
coupling are discussed in Sec. II C of Ref.@62#!.

Inverting Eq.~22! yields @see Eq.~26!#

y~w!5
A11w2A12w

A11w1A12w
. ~28!

The conformal mapping given by Eqs.~22! and ~28! maps
the doubly cutw plane with cuts running fromw51 to
w5` and w521 to w52` unto the unit circle in the
complex y plane. The cuts themselves are mapped to the
edge of the unit circle in they plane.

In comparison to the investigations@49# and@50#, we use
here a different conformal mapping defined in Eqs.~22! and
~28! which reflects the different singularity structure in the
complex plane†cf. Eq. ~27! in Ref. @49#‡. We also mention
the application of Pade´ approximants for the numerical im-
provement of the conformal mapping performed according to
Eq. ~25!. In comparison to a recent investigation@55#, where
the additional Pade´ improvement in the conformal variable is
also used, we perform here the analytic continuation by a
mapping whose structure reflects the double cuts suggested
by the asymptotic properties of the perturbative coefficients
given in Eqs.~2!, ~3!, and~6! †cf. Eq. ~5! in Ref. @55#‡.

The method introduced in this section will be referred to
as ‘‘method II.’’ It is one of the motivations for the current
paper to contrast and compare the two methods I and II. A

RESUMMATION OF THE DIVERGENT PERTURBATION . . . PHYSICAL REVIEW A64 013403

013403-5



comparison of different approaches to the resummation prob-
lem for the series with both alternating and nonalternating
divergent components appears useful, in part because the
conformal mapping~without further Pade´ improvement! has
been recommended for the resummation of quantum chro-
modynamic perturbation series@49,50#.

We do not consider order-dependent mappings here@51–
54#. For an order-dependent mapping to be constructed, the
conformal mapping in Eq.~22! has to be modified, and a free
parameterr has to be introduced. The coefficientsCN in the
accordingly modified Eq.~24! then becomer dependent.
The free parameterr is chosen so that ther-dependent co-
efficient CM(r) of order M vanishes. Consequently, the
choice ofr depends on the orderM of perturbation theory,
and in this way, the mapping becomes order dependent. Cer-
tain complications arise becauser cannot be chosen arbi-
trarily, but has to be selected, roughly speaking, as the first
zero of ther-dependent coefficientCM(r) for which the
absolute magnitude of the derivativeCM8 (r) is small~this is
explained in Ref.@60#, p. 886!. It is conceivable that with a
judicious choice ofr, further acceleration of the convergence
can be achieved, especially when the order-dependent map-
ping is combined with a Pade´ approximation as it is done
here in Eq.~25! with our order-independentmapping. In the
current paper, we restrict the discussion to the conformal
order-independent mapping~22! that is nevertheless optimal
in the sense discussed in Refs.@49,50#.

V. NUMERICAL CALCULATIONS

In this section, the numerical results based on the resum-
mation methods introduced in Secs. III and IV are presented.
Before we describe the calculation in detail, we should note
that relativistic corrections to both the real and the imaginary
part of the energy contribute at a relative order of (Za)2

compared to the leading nonrelativistic effect that is treated
in the current paper~and in the previous work on the subject,
see, e.g., Refs.@16,25#!. Therefore, the theoretical uncer-
tainty due to relativistic effects can be estimated to be, at
best, 1 part in 104 ~for an outline of the relativistic and quan-
tum electrodynamic corrections in hydrogen see Refs.@63–
69#!. Measurements in very high fields are difficult@35#. At
the achievable field strengths to date~less than 0.001 a.u. or
about 5 MV/cm!, the accuracy of the theoretical prediction
exceeds the experimental precision, and relativistic effects do
not need to be taken into account.

The perturbative coefficientsEn1n2m
(N) defined in Eq.~1! for

the energy shift can be inferred, to arbitrarily high order,
from the Eqs.~9!, ~13–15!, ~28–33!, ~59–67!, and ~73! in
Ref. @1#. The atomic unit system is used in the sequel, as is
customary for this type of calculation@1,6,9,11#. The unit of
energy isa2 mec2527.211 eV wherea is the fine-structure
constant, and the unit of the electric field is the field strength
felt by an electron at a distance of one Bohr radiusaBohr to a
nucleus of elementary charge, which is 1/(4pe0)(e/aBohr

2 )
55.1423103 MV/cm ~here, e0 is the permittivity of the
vacuum!.

We consider the resummation of the divergent perturba-

tive expansion~1! for two states of atomic hydrogen. These
are the ground state (n15n25m50) and an excited state
with parabolic quantum numbersn153, n250, m51. We
list here the first few perturbative coefficients for the states
under investigation. For the ground state, we have~in atomic
units!,

E000~F !52
1

2
2

9

4
F22

3 555

64
F42

2 512 779

512

3F62
13 012 777 803

16 384
F81•••. ~29!

The perturbation series for the staten153, n250, m51 is
alternating, but has a subleading nonalternating component
@see Eq.~2!#. The first perturbative terms read

E301~F !52
1

50
1

45

2
F2

31 875

2
F2

1
54 140 625

4
F32

715 751 953 125

16
F41•••. ~30!

Note that forF50, the unperturbed nonrelativistic energy is
recovered, which is21/(2 n2) in atomic units. In contrast to
the real perturbative coefficients, the energy pseudoeigen-
value ~resonance! E(n1 ,n2 ,m,F) has a real and an imagi-
nary component,

E~n1 ,n2 ,m,F !5ReEn1n2m~F !2
i

2
Gn1n2m~F !, ~31!

whereGn1n2m(F) is the autoionization width.
Using a computer algebra system@70,71#, the first 50 non-

vanishing perturbative coefficients are evaluated for the
ground state, and for the state with parabolic quantum num-
bersn153, n250, m51, we evaluate the first 70 nonvan-
ishing perturbative coefficients. The apparent convergence of
the transforms defined in Eqs.~11! and ~26! in higher order
is examined. In the case of the Borel-Pade´ transforms defined
in Eq. ~11!, use is made of the replacements in Eqs.~15! and
~16! @‘‘leading poles are being put in by hand’’#. This pro-
cedure leads to the numerical results listed in Tables I and II.
The numerical error of our results is estimated on the basis of
the highest and lowest value of the four highest-order trans-
forms.

An important result of the comparison of the methods
introduced in Secs. III and IV is the following: Both methods
appear to accomplish a resummation of the perturbation se-
ries to the physically correct result. Method I~Borel1Padé
with leading renormalon poles, see Sec. III! and method II
~Borel1Padé-improved conformal mapping, see Sec. IV! ap-
pear to lead to results of comparable accuracy.

To date, a rigorous theory of the performance of the re-
summation methods for divergent series of the type dis-
cussed in this paper~with alternating and nonalternating
components! does not exist. Thelogarithmicsingularities in-
troduced by the branch points of higher-order polylogarithms
@see the indexk in Eq. ~19!# are difficult to approximate with
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the rational functions employed in the construction of Pade´
approximants. A solution to the problem of approximating
the logarithmic singularities, based on the finite number of
perturbative coefficients, would probably lead to further op-
timizimation of the rate of convergence of the transformed
series. Within the current scheme of evaluation, the problem-
atic logarithmic singularities may be responsible, at least in
part, for certain numerical instabilities at higher transforma-
tion order, e.g., in the result forT9E70(F52.139331024) in
Eq. ~32! below.

For the atomic state with quantum numbersn153, n2
50, and m51, the evaluation of the transformsTEM(F)
defined in Eq. ~11! ~method I! and of the transforms
T9EM(F) defined in Eq.~26! ~method II! in transformation
order M567,68,69,70 for a field strength ofF
52.139331024. Method I leads to the following results,

TE67~F52.139331024!520.015 860 468 199 2

2 i 0.529 04831026,

TE68~F52.139331024!520.015 860 468 200 9

2 i 0.529 04731026,

TE69~F52.139331024!520.015 860 468 198 9

2 i 0.529 04831026,

and

TE70~F52.139331024!520.015 860 468 194 5

2 i 0.529 01531026. ~32!

Method II yields the following data,

T9E67~F52.139331024!520.015 860 468 200 4

2 i 0.529 04731026,

T9E68~F52.139331024!520.015 860 468 200 3

2 i 0.529 04731026,

T9E69~F52.139331024!520.015 860 468 200 4

2 i 0.529 04731026,

and

TABLE I. Real and imaginary part of the energy pseudoeigenvalueE000(F) for the ground state of atomic
hydrogen~parabolic quantum numbersn150, n250, m50).

F~a.u.! Re E000(F) G000(F)

0.04 20.503 771 591 013 6542(5) 3.892 699 990(1)31026

0.06 20.509 203 451 088(2) 5.150 7750(5)31024

0.08 20.517 560 50(5) 4.539 63(5)31023

0.10 20.527 4193(5) 1.4538(5)31022

0.12 20.537 334(5) 2.9927(5)31022

0.16 20.555 24(5) 7.131(5)31022

0.20 20.5703(5) 1.212(5)31021

0.24 20.5826(1) 1.767(5)31021

0.28 20.5917(5) 2.32(3)31021

0.32 20.600(5) 2.92(3)31021

0.36 20.604(5) 3.46(3)31021

0.40 20.608(5) 4.00(5)31021

TABLE II. Real part and imaginary part of the energy pseudoeigenvalueE301(F) for the excited state
with parabolic quantum numbersn153, n250, m51. The field strengthF is given in atomic units. The data
are compared to Ref.@9#. Discrepancies are observed at large electric-field strength.

Real part of the resonance ReE301(F) Autoionization decay widthG301(F)
F ~a.u.! Ref. @9# Our results Ref.@9# Our results

1.556031024 20.016 855 237 2 20.016 855 237 140 7617(5) 0.4231029 0.421 683(5)31029

1.944831024 20.016 179 388 5 20.016 179 388 2570(5) 0.143 831026 0.143 773(5)31026

2.139331024 20.015 860 468 20.015 860 468 20(1) 0.105 731025 0.105 09(5)31025

2.528231024 20.015 269 204 20.015 269 293(1) 0.175 6031024 0.176 39(5)31024

2.917231024 20.014 740 243 20.014 742 60(3) 0.976 5131024 0.999 96(9)31024

3.306131024 20.014 242 49 20.014 2602(3) 0.278 5331023 0.2954(2)31023
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T9E70~F52.139331024!520.015 860 468 203 3

2 i 0.529 04631026. ~33!

Numerical results obtained by resummation are presented in
Tables I and II for a variety of field strengths and for the two
atomic states under investigation here. Results are compared
to the numerical calculation@9#. which yields very accurate
data for all experimentally accessible electric-field strengths
to date. In addition, it should be noticed that the inaccuracies
at excessively large field of Ref.@9# have been pointed out
by the same authors in Ref.@27#. However, not all atomic
states considered in Ref.@9# were treated in the later inves-
tigation@27#. Our data for the ground state indicated in Table
I are consistent with the numerical results obtained in Ref.
@27#. However, it should be noted that the later work@27#
leaves out the excited state with quantum numbersn153,
n250, andm51 for which results are given here in Table II.
To the best of our knowledge, the numerical discrepancy
with Ref. @9# for the excited state with quantum numbers
n153, n250, andm51 has not been recorded in the litera-
ture. We do not claim here that it would have been impos-
sible to discern this discrepancy with the other methods that
have been devised for the theoretical LoSurdo-Stark prob-
lem. Notably, it appears likely that the approach from Ref.
@27# or the method presented in Ref.@19# could easily be
generalized to the particular excited state considered here,
and that such a generalization would lead to very accurate
results. We merely include Table II here in order to illustrate
the utility of the rather unconventional resummation method
for the regime of large coupling, where even rather sophisti-
cated numerical methods, which avoid the intricacies of a
small-field perturbative expansion, have been shown to be
problematic@9,27#. We confirm that the numerical data given
in Ref. @9# are accurate up to a field strength ofF'0.1 for
the ground state and up toF'331024 for the excited (n
55) state withn153, n250, andm51.

VI. MODEL EXAMPLE FOR DEGENERATE MINIMA

We consider the generating functional in a zero-
dimensional theory~in this case, the usual path integral re-
duces to an ordinary integral!. First, we briefly consider the
F4 theory in zero dimensions†see Eqs.~9–177! ff. in Ref.
@72#‡; the generating functional reads

Z~F!5E
2`

` dF

A2p
expF2

1

2
F22gF4G . ~34!

The strictly alternating divergent asymptotic expansion in
powers ofg for g→0 reads,

Z~F!; (
N50

`
4NG~2N11/2!

ApG~N11!
~2g!N. ~35!

On using the known asymptotics valid forN→`, which in
this case yield the ‘‘large-order’’ asymptotics of the pertur-
bative coefficients,

G~2N11/2!

G~N11!
;

4N

A2p
G~N!F11OS 1

ND G , ~36!

it is easy to explicitly establish the factorial divergence of the
series~see also p. 888 of Ref.@60#!. The generating func-
tional in zero dimensions has been proposed as a paradig-
matic example for the divergence of perturbation theory in
higher order. It can be resummed easily to the nonperturba-
tive result; in particular, it is manifestly Borel summable, and
no singularities are present on the positive real axis.

Complications are introduced by degenerate minima. As a
second example, we consider the modified generating func-
tional ~compare with Eq.~2.6! on p. 15 of Ref.@73# and with
Eq. ~40.1! on p. 854 of Ref.@60#!:

Z8~F!5E
2`

` dF

A2p
expF2

1

2
F2~12AgF!2G

5E
2`

` dF

A2p
expF2

1

2
F21AgF32

1

2
gF4G .

~37!

The expansion of the exponential in powers of the couplingg
leads to a divergent asymptotic series,

Z8~F!5 (
N50

`
1

N! E2`

` dF

A2p
e21/2F2SAgF32

1

2
gF4D N

5 (
N50

` E
2`

` dF

A2p
e21/2F2

(
j 50

N
~21! j

G~2N2 j 11!

3S 2N2 j
j D ~Agf3!2(N2 j )S gf4

2 D j

5 (
N50

`

2Ap
~21!NC2N

N11/2~1!

G~N21/2!
gN

5 (
N50

`
8NG~2N11/2!

ApG~N11!
gN, ~38!

whereCM
N (x) denotes a Gegenbauer~ultraspherical! polyno-

mial. Note that terms of half-integer power ofg entail an odd
power of the field and vanish after integration. The first few
terms of the asymptotic expansion read,

Z8~F!5116g1210g2113 860g311 351 350g4

1174 594 420g5128 109 701 620g6

15 421 156 741000g711 218 404 977 539 750g8

1O~g9!. ~39!

For the perturbative coefficients

CN5
8NG~2N11/2!

ApG~N11!
, ~40!

ULRICH D. JENTSCHURA PHYSICAL REVIEW A64 013403

013403-8



we establish the following asymptotics,

CN;
1

pA2
N2132NG~N11!. ~41!

Due to the nonalternating character of the expansion~38!, it
is not Borel summable in the ordinary sense. Rather, it is
Borel summable in the distributional sense@48,47#. Here, we
present numerical evidence supporting the summability of
the divergent expansion~39! based on a finite number of
perturbative coefficients. The final integration is carried out
along the contourC0 introduced in Ref.@46# @see also Eq.
~44! below#. The same contour has also been used for the
resummation of divergent perturbation series describing
renormalization group~anomalous dimension! g functions
@55#. As explained in Ref.@46#, the integration alongC0,
which is based on the mean value of the results obtained
above and below the real axis, leads to areal final result if all
perturbative coefficients are real.

In particular, the resummation of the divergent expansion
~39! is accomplished as follows. We first define the Borel
transform of the generating functional by@see Eq.~4! in Ref.
@58# and the discussion after Eq.~9!#

ZB8~z![B (1,1)@Z8;z#5 (
N50

`
CN

G~N11!
zN. ~42!

Padéapproximants to this Borel transform are evaluated,

PM8 ~z!5@ vM /2b /v~M11!/2b#Z
B8
~z!, ~43!

wherevxb denotes the largest positive integer smaller thanx.
We then evaluate the~modified! Borel integral along the
integration contourC0 introduced in Ref.@46#; specifically,
we define the transformTZM(g)

TZM~g!5E
C0

dt exp~2t !PM8 ~g t!. ~44!

In this case, poles above and below the real axis must be
considered, and the final result involves no imaginary part.
The particular case ofg50.01 is considered. Values for the
partial sums of the perturbation series~39! and the trans-
forms defined in Eq.~44! are shown in Table III. The trans-
forms exhibit apparent convergence to six decimal places in
20th order, whereas the partial sums of the perturbation se-
ries diverge. Between the second and fourth terms of the
perturbation series~the fourth term constitutes the minimal
term!, the partial sums provide approximations to the exact
result. It might seem surprising that the minimal term in the
perturbative expansion is reached already in fourth order,
although the coupling assumes the small valueg50.01. This
behavior immediately follows from the large geometric fac-
tor in Eq. ~41! which leads to a ‘‘resultative coupling
strength parameter’’ ofgres50.32. ‘‘Nonperturbative ef-
fects’’ of the order of exp(21/gres) provide a fundamental
limit to the accuracy obtainable by optimal truncation of the
perturbation series; this is consistent with the numerical data
in Table III.

We have also investigated the resummation of the diver-
gent series~39! via a combination of a conformal mapping
and Pade´ aproximants in the conformal variable. The situa-
tion is analogous to the LoSurdo-Stark effect: Results are
consistent with those presented in Table III obtained by the
‘‘pure’’ Borel-Padéand in this case slightly more accurate.
The radius of convergence of the Borel transformZB8 (z) de-
fined in Eq.~42! is s51/32 @cf. Eq. ~17! for the LoSurdo-
Stark effect#, and the appropriate conformal mapping in this
case reads

w5
4y

~11y!2
~45!

@cf. Eq. ~22!#. The inverse reads

y~w!5
12A12w

11A12w

@cf. Eq. ~28!#. The conformal mapping~45! maps the com-
plex w plane with a cut along (1,̀) unto the unit circle in the
complexy plane. While the zero-dimensional model example
given in Eq.~37! does not exhibit all problematic features of
degenerate anharmonic double-well oscillators, certain
analogies can be established; these comprise in particular the
need to evaluate the mean value of Borel transforms above
and below the real axis~see Appendix B!.

TABLE III. Resummation of the asymptotic series for the gen-
erating functional of a zero-dimensional theory with degenerate
minima given in Eqs.~38! and ~39!. We haveg50.01. Results in
the third column are obtained by the method indicated in Eq.~44!
along the integration contourC0 ~see Ref.@46#!. The partial sums in
the second column are obtained from the asymptotic series~38!.

M Partial sum TZM(g50.01)

2 1.081 000 1.102 326
3 1.094 860 1.096 141
4 1.108 373 1.089 875
5 1.125 832 1.090 695
6 1.153 942 1.092 000
7 1.208 154 1.091 596
8 1.329 994 1.091 389
9 1.642 718 1.091 553

10 2.545 239 1.091 545
11 5.438 230 1.091 503
12 1.53101 1.091 525
13 5.53101 1.091 527
14 2.23102 1.091 519
15 9.53102 1.091 523
16 4.53103 1.091 523
17 2.23104 1.091 521
18 1.23105 1.091 522
19 6.93105 1.091 522
20 4.13106 1.091 522

exact 1.091 522 1.091 522
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VII. CONCLUSION

We discuss the resummation of the divergent perturbation
series of the LoSurdo-Stark effect, and of a divergent model
series describing a zero-dimensional theory with degenerate
minima, using two methods. Method I, which uses a variant
of the contour-improved Borel-Pade´ technique introduced in
Ref. @25#, is described in Sec. III. The integration contour is
modified so that the additional terms that have to be added to
the principal value of the Laplace-Borel integral are clearly
identified†see also the discussion in Ref.@46# and Eq.~12!‡.
Use is made of the leading infrared renormalon pole. Method
II, which comprises an analytic continuation by conformal
mapping with additional improvement by Pade´ approximants
in the conformal variable@see Eq.~25!#, is discussed in Sec.
IV. This method is a variant of the method introduced in
Refs. @49,50# which has been shown to accelerate conver-
gence of perturbative quantum chromodynamics~by optimal
conformal mapping of the Borel plane!. We find thatboth
methods accomplish a resummation of the divergent pertur-
bation series~1! for the LoSurdo-Stark effect, and the decay
width of the quasistationary states is obtained~see Sec. V.
Numerical results are given in Tables I and II!. A main result
of the current paper is the demonstration of the analogous
mathematical structure~doubly cut Borel plane! of the per-
turbative expansion for the LoSurdo-Stark effect and pertur-
bative expansions in quantum chromodynamics~renormalon
theory@74#!. The series investigated here exhibit a nontrivial
singularity structure in the Borel plane. In particular, we en-
counter poles and branch cuts on the positive real axis.

In quantum electrodynamics, we encounter nonperturba-
tive effects in the electron-positron pair-production ampli-
tude in a background electric field@72,75–77#. The vacuum-
to-vacuum amplitude acquires an imaginary part, whose
magnitude is related to the production rate per space-time
volume of fermion-antifermion pairs. This nonperturbative,
imaginary contribution can be inferred from the perturbative
expansion of the effective action by contour-improved re-
summation~see Ref.@46# and the discussion in Appendix A!.
Nonperturbative effects typically involve a nonanalytic fac-
tor of exp(21/g) whereg is an appropriate coupling param-
eter for the physical system under investigation~in the case
of the LoSurdo-Stark effect, the coupling parameter is the
electric-field strengthF). The existence of nonperturbative
contributions is intimately linked with the failure of the Car-
leman criterion for a particular perturbation series~see for
example Ref.@78#, Theorems XII.17 and XII.18 and the defi-
nition on p. 43 in Ref.@79#, p. 410 in Ref.@41#, or the
elucidating discussion in Ref.@80#!. The Carleman criterion
determines, roughly speaking, if nonanalytic contributions
exist for a given effect that is described by a specified per-
turbation series.

The current paper illustrates the utility of resummation
methods in those cases where perturbation theory breaks
down at large coupling. As explained in Sec. V, even in
situations where the perturbation series diverges strongly, it
can still be used to obtain meaningful physical results if it is
combined with a suitable resummation method. In a rela-
tively weak field, it is possible to obtain more accurate nu-

merical results by resummation than by optimal truncation of
the perturbation series~see also Ref.@46#!. In a strong field,
it is possible to obtain physically correct results by resum-
mation even though the perturbation series diverges strongly
~see the discussion in Sec. V and the data in Tables I, II, and
III !. By resummation, the perturbation series, which is inher-
ently a weak-coupling expansion, can be given a physical
interpretation even in situations where the coupling is large.
Returning to the analogy to quantum field theory, one might
be tempted to suggest that physically complete results are
obtained after regularization, renormalization,and
resummation.
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APPENDIX A: DIVERGENT PERTURBATION SERIES IN
QUANTUM FIELD THEORY

We briefly indicate aspects of certain divergent perturba-
tion series in quantum field theory, in particular, the quantum
electrodynamic~QED! effective action and the associated
pair-production amplitude for electron-positron pairs. We
use natural units in which the reduced Planck’s constant, the
permittivity of the vacuum, and the speed of light~in field-
free vacuum! assume the value of unity (\5e05c51). The
one-loop QED effective action for an arbitrary electric and
magnetic field per space-time volume reads~this result can
be found, e.g., in Eq.~4-123! of Ref. @72#, upon inclusion of
an additional counterterm; see also Refs.@76,81#!

S5 lim
e,h→01

2
1

8p2E0

i`1hds

s3
e2(me

2
2 ie)s

3F ~es!2ab coth~eas!cot~ebs!2
1

3
~es!2~a22b2!21G .

~A1!

The specification of the infinitesimal quantityh is necessary,
strictly speaking, in order to avoid the singularities of the
coth function along the imaginary axis. Bya and b we de-
note thesecular invariants,

a5AAF 21G 21F 2,

b5AAF 21G 22F 2,
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F5
1

4
FmnFmn5

1

2
~B22E2!,

G5
1

4
Fmn~* F !mn52E•B.

If the relativistic invariantG is positive, then it is possible to
transform to a Lorentz frame in whichE andB areantipar-
allel. In the caseG,0, it is possible to choose a Lorentz
frame in whichE andB areparallel. Irrespective of the sign
of G, we have in the specified frame

a5uBu and b5uEu.

Then, in the special Lorentz frame, the effective action reads
@we keep all infinitesimal contributions#

S5 lim
e,h→01

2
1

8p2E0

i`1hds

s3
e2(me

2
2 ie)s

3F ~es!2uBuuEucoth~euBus!cot~euEus!

2
1

3
~es!2~B22E2!21G . ~A2!

The particular cases of a pure magnetic and a pure electric
field follow from the above integral representation by con-
sidering appropriate limits (uEu→0 and uBu→0, respec-
tively!. These particular cases are of some interest because
they can be used as model series for divergent alternating
and nonalternating asymptotic perturbation series@44–
46,58#. In the case of a pure magnetic fieldB5uBu, the result
reads~see, e.g., Eq.~5! in Ref. @45#!

SB52
e2B2

8p2 E0

`ds

s2 H coths2
1

s
2

s

3J expS 2
me

2

eB
sD ,

~A3!

where me is the mass of the electron. This result can be
expressed as a divergent asymptotic perturbation series in the
coupling parametergB5e2B2/me

4 . For the pure electric field,
the result reads

SE5
e2E2

8p2 E0

` ds

s2 H coths2
1

s
2

s

3J expF2 iS me
2

eE
2 ie D sG

52
e2E2

8p2 E01 ie

`1 ie ds

s2 H cots2
1

s
1

s

3J expF2
me

2

eE
sG ~A4!

@Eq. ~7! of Ref. @46# and the expression before Eq.~10! of
Ref. @45# contain typographical errors#. We take the oppor-
tunity to supplement the proportionality factor for the ex-
pression in Eq.~7! of Ref. @46# to yield the effective action
per space-time volume element; it readse2E2/(8p2). As evi-
dent from the Eq.~A4!, the integration of the Borel-Pade´
transform for the electric-field case should be carried out
along the contourC11 shown here in Fig. 1. When this con-
tour is used, then a sign change results for the imaginary

contributions in Table I of Ref.@46# ~the sign change of the
imaginary part, according to the choice of the integration
contour, has been discussed at length in Ref.@46#!. The mag-
nitude of the imaginary part yields the pair-production am-
plitude. The contourC11 is used in the current investigation
~and in the context of the related brief discussion in Ref.
@46#! for the calculation of nonperturbative imaginary ef-
fects, i.e., the autoionization decay width of atomic states
~LoSurdo-Stark effect!.

The divergent asymptotic perturbation series for the cases
of the magnetic and electric field, generated by the expansion
of the results in Eqs.~A3! and~A4!, can be found in Eqs.~6!
and ~7! of Refs. @45# (B field, alternating series, coupling
parametergB5e2B2/me

4) and in Eqs.~8! and~9! of Ref. @46#
(E field, nonalternating series, coupling parametergE

5e2E2/me
4). The singularity structure of the Borel transform

of the series for the magnetic-field case has been determined
in Ref. @58# as a sequence of singularities corresponding to
alternating, factorially divergent components~these corre-
spond in their mathematical structure to the so-called ultra-
violet renormalons in quantum chromodynamics!. The per-
turbation series for the LoSurdo-Stark effect contains both
nonalternating and alternating components so that its resum-
mation represents a comparatively more interesting task. The
same applies to the more complex perturbation series calcu-
lated in Ref.@82# for the renormalization groupg function,
whose resummation—at strong coupling—has been dis-
cussed in Refs.@55,82# ~in this case, there is no imaginary
part involved!. We are not aware of anya priori reasoning to
determine the absence or presence of imaginary contribu-
tions in a particular physical problem~see also the discussion
in Refs.@83#!.

APPENDIX B: BOREL SUMMABILITY IN PROBLEMATIC
CASES

Consider the one-dimensional double-well Hamiltonian

H~g!5p21x2~12gx!2. ~B1!

For g50, the Hamiltonian describes harmonic oscillations.
For g.0, we have degenerate minima of the potential atx
50 and atx51/g, and to each eigenvalue of the unperturbed
harmonic oscillator, we have to associate two eigenvalues
belonging to opposite-parity wave functions with respect to
x51/(2g). The difference of the two eigenvalues is nonana-
lytic in g. Two different approaches have been developed to
circumvent this problem and to allow for a treatment based
on the resummation of perturbation series.

The first approach@60# is based essentially on generalized
Bohr-Sommerfeld quantization formulas and leads to an ex-
pansion of the ground-state energy eigenvalue in terms of

E~g!5 (
n50

`

El
(0)gl1 (

n51

`
1

Ap g
e21/6g

3 (
k50

n21

@ ln~22/g!#k(
l 50

`

Ekl
(n)gl , ~B2!
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where the upper index of theE coefficients labels the multi-
instanton contributions~the zero-instanton contribution cor-
responds to the ‘‘usual’’ perturbative expansion!. The odd-
instanton contributions lead to a separation of the ground
state and the first excited state that have opposite parity but
the same naive perturbation series(n50

` El
(0)gl . The series

(n50
` El

(0)gl is nonalternating and therefore not Borel sum-
mable; however, possible imaginary contributions must be
suppressed for physical reasons because the ground-state en-
ergy is real. The suppression can be enforced explicitly by
defining the sum as the arithmetic mean of the values ob-
tained above and below the real axis, or it can be motivated
by the following observation@60#: We define the sum of
(n50

` El
(0)gl for negativeg and carry out an analytic continu-

ation to positiveg; this leads to an imaginary part, which in
this case, cancels with the imaginary part generated by the
ln(22/g) coming from the two-instanton contribution (n
52, k51). Note that for the model example discussed in
Sec. VI, only one alternative is feasible—the explicit
cancellation—because no additional terms are present that
could lead to cancellations.

The second approach@84,85# involves contour integra-
tions and makes use of projection operators in order to ‘‘se-
lect’’ states of specified parity~this approach has been shown
to be applicable as well to the problematic Herbst-Simon
hamiltonian@86# that involves a vanishing perturbation se-
ries!. Specifically, we can write the perturbed energy eigen-
value as

E~g!5
Re F1~g,g!

Re F0~g,g!
, ~B3!

where

F j~g,g!5
1

2 p i RG
dz zj^c6~g!u

1

H~g!2z
uc6~g!&,

~B4!

and wherec6(g) are test functionswith a definite parity
with respect to 1/(2g). The closed contourG has radius
unity; it is chosen to encircle one and only one shifted reso-
nance of the perturbed oscillator, while the test functions
select the state with the desired parity. Specifically, we have
c6(g)5P6(g)c wherec is the eigenvector of the unper-
turbed hamiltonian, and the projection operators are

@P6~g!c#~x!5
1

2
@c~x!6c~1/g2x!#. ~B5!

The functionsF j (g,g) may be expressed as asymptotic se-
ries,

F j~g,g!5 (
N50

M

@aj ,N1 i bj ,N~g!#gN1O~gM11!. ~B6!

The authors of Refs.@84,85# defineF j
R(g,g) to be the Borel

sum of(N50
` aj ,NgN for g, ugu, and argg small and positive,

and they establish a corresponding relation forF j
I (g,g) and

(N50
` bj ,NgN. According to ~unnumbered! equations on p.

626 of Ref.@84#, the final result in this case is given in terms
of the mean values—each obtained above and below the real
axis—of the two Borel sumsF j

R andF j
I ,

Re F j~g,g!5
1

2
@F j

R~g,g!1F j
R~g,ḡ !#

1
i

2
@F j

I~g,g!2F j
I~g,ḡ !#, ~B7!

where z̄ denotes the complex conjugate ofz. The value
Re F j (g,g) is then determined by~unique! analytic continu-
ation g→g from ReF j (g,g). In our simplified model ex-
ample, we havebj ,N(g)50 ~all perturbative coefficients are
real!. The need to evaluate the arithmetic mean of Borel
sums above and below the real axis appears to arise naturally
in the context of double-well problems.

@1# H. Silverstone, Phys. Rev. A18, 1853~1978!.
@2# L. Benassi, V. Grecchi, E. Harrell, and B. Simon, Phys. Rev.

Lett. 42, 704 ~1979!.
@3# H.S. Silverstone and P.M. Koch, J. Phys. B12, L537 ~1979!.
@4# J.R. Oppenheimer, Phys. Rev.31, 66 ~1928!.
@5# M.H. Alexander, Phys. Rev.178, 34 ~1969!.
@6# M. Hehenberger, H.V. McIntosh, and E. Bra¨ndas, Phys. Rev.

A 10, 1494~1974!.
@7# N.A. Gushina and V.K. Nikulin, Chem. Phys.10, 23 ~1975!.
@8# P. Froelich and E. Bra¨ndas, Phys. Rev. A12, 1 ~1975!.
@9# R.J. Damburg and V.V. Kolosov, J. Phys. B9, 3149~1976!.

@10# T. Yamabe, A. Tachibana, and H.J. Silverstone, Phys. Rev. A
16, 877 ~1977!.

@11# R.J. Damburg and V.V. Kolosov, J. Phys. B11, 1921~1978!.
@12# S. Graffi and V. Grecchi, Commun. Math. Phys.62, 83 ~1978!.
@13# I.W. Herbst and B. Simon, Phys. Rev. Lett.41, 67 ~1978!.
@14# L. Benassi, V. Grecchi, E. Harrell, and B. Simon, Phys. Rev.

Lett. 42, 1430~1979!.

@15# R.J. Damburg and V.V. Kolosov, J. Phys. B12, 2637~1979!.
@16# H. Silverstone, B.G. Adams, J. Cˇ ižek, and P. Otto, Phys. Rev.
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