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PHYSICAL REVIEW D, VOLUME 62, 076001

Resummation of nonalternating divergent perturbative expansions

Ulrich D. Jentschura
National Institute of Standards and Technology, Mail Stop 8401, Gaithersburg, Maryland 20899-8401
and Institut fu Theoretische Physik, TU Dresden, MommsenstraRe 13, 01062 Dresden, Germany
(Received 12 January 2000; published 17 August 2000

A method for the resummation of a nonalternating divergent perturbation series is described. The procedure
constitutes a generalization of the Borel-Pauethod. Of crucial importance is a special integration contour in
the complex plane. Nonperturbative imaginary contributions can be inferred from the purely real perturbative
coefficients. A connection is drawn from the quantum field theoretic problem of resummation to divergent
perturbative expansions in other areas of physics.

PACS numbses): 11.15.Bt, 11.10.Jj, 11.25.Sq, 12.20.Ds

In view of the probable divergence of quantum field this case, the analytic continuation can be achieved by evalu-
theory in higher ordef1,2], the resummation of the pertur- ating Padeapproximants[9]. The firstn+1 terms of the
bation series is necessary for obtaining finite answers t®orel transformed serig8) can be used to construct a diag-
physical problems. While the divergent expansions probablynal or off-diagonal Padapproximant(for the notation see
constitute an asymptotic seri¢8], it is unclear whether [10,11)):
unique answers can be inferred from perturbation theory
[4,5]. Significant problems in the resummation are caused by Po(z)=[In/2)/[(n+ D/2]]s(2), 4)
infrared (IR) renormalons. These are contributions corre-

sponding to a nonalternating divergent perturbation Serie?/vhere[[x]] denotes the integral part af The resummation

The .IR renormalons are rgsponsibk_e for_ the Borel nonsumgg accomplished by constructing the sequence of transforms
mability of a number of field theories including quantum (7F(9)}-_ , where
n n=0

chromodynamics (QCD) and quantum electrodynamics
(QED) [4,6].

Here | advocate a modification of the resummation ']’fn(g):J' dtexp —t)P,(gt), (5)
method proposed ifb,7] for a nonalternating divergent per- Ci
turbation series. The method starts with a given input series,
and the integration contou€; (wherej=—-1,0,+1) is as
shown in Fig. 1(for j=—1 andj=+1). The result obtained

f(g)”nzo cng”, >0, g>0, (1) alongC_; is the complex conjugate of the result alo@g .
N The arithmetic mean of the results of the integrations along

whereg is the coupling parameter and the perturbative coefC-1 and C.1 is associated witfC,. Therefore, the result

ficientsc, are expected to diverge as folloWa: along Cy is realw rather tr_\an gomplex. The limit of the se-
quence{7T,(9)},—o (provided it exists,

o

n'n”
ch~K ; N—o, 2 lim 7 ,(g9)=1f(9), (6)

n
S n—o

with K, y and S being constant. The Borel transforfg of

; ) is a plausible complete nonperturbative result inferred from
the perturbation seried),

the perturbative expansiofi). Which of the contoursC;

[}

Cn .
fa(g)= EO mgn! (3) ) Integration contour C'_;
n= H

- . . g * ) * Re(t)
has a finite radius of convergence about the origin. For the W, W, W,
evaluation of the Borel integrafg(g) has to be continued x ©) ©) ®
analytically beyond the radius of convergence. Strictly
speaking, this analytic continuation has to be done on the Integration contour Cly
branch cut in view of the nonalternating character of the ()
serle_s(l). This reql_,ureme_nt can be_z relaxe_d slightly by per- X ©) - ® - ® P Re(t)
forming the analytic continuation into regions whegeac-
quires at least an infinitesimal imaginary pgrg=*ie. In x * x *

FIG. 1. Integration contours for the evaluation of the general-
*Electronic address: ulj@nist.gov ized Borel integral in Eq(5).
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(where j=—1,0,+1) is chosen has to be decided on thenumerically stable convergence, and it has been shown to
basis of additional considerations which do not follow from yield consistent results in many cases, including applications
perturbation theory alone. from quantum field theorj11] and from other areas of phys-
The zeros of the denominator polynomial of the Page ics [12]. Because the transformation fulfills an accuracy-
proximant[see Eq.4)] correspond to the poles of the inte- through-order relatiofisee Eq(9) in [11]], it can be used to
grand in Eq.(5). Denote byt the integration variable for the predict perturbative coefficients. Thetransformation is pri-
evaluation of the generalized Borel integral in Ef), then  marily useful for alternating series. It fails, in general, in the
the poles lie at=z, (where the index numbers the polgs resummation of the nonalternating series discussed Taee.
along the positive real axis (Im=0) and in the complex & transformation and the resummation method introduced
plane (Imz;#0). The poles lying on the positive real axis here complement each other
are treated as half-poles encircled in the mathematically posi- Three applications of the resummation method defined in
tive sense foIC_, and as half-poles encircled in the math- Egs. (1)—(6) are considered belowi) the QED effective
ematically negative sense f&,,. The contourC_, en-  action in the presence of a constant background electric field,
circles all poles at=z; in the lower right quadrant of the (ii) a mathematical model series which simulates the ex-
complex plane (Rg>0,Imz<0) in the positive sensesee  pected large-order behavior of perturbative coefficients in
Fig. 1). The contribution of these poles should be added tgjuantum field theory(iii) the perturbation series for the en-
the final result. The contou®, ; is understood to encircle all ergy shift of an atomic level in a constant background elec-
poles in the upper right quadrant of the complex plane in thdric field (including the auto-ionization widjh The nonper-
mathematically negative sense. In general, the integratioriéirbative imaginary contributions obtained alofly ; and
alongC_, andC_, lead to a nonvanishing imaginary part in C. 1 find a natural physical interpretation in all cases consid-
the final result forf (g) [see Eq(6)], although all the pertur- ered.
bative coefficientsc, are by assumption real and positive =~ The QED effective action, or vacuum-to-vacuum ampli-
[see Eq(1)]. It might be interesting to note that, as with any tude, in the presence of a constant background electric field
complex integration, it is permissible to deform the integra-has been treated nonperturbatively{ 118,14, and the result
tion contours shown in Fig. 1 in accord with the Cauchyis proportional to the integral
theorem as long as all pole contributions are properly taken
into account. ~—ieds 1 s 1
This paper represents a continuation of previous work on S(ge)=— Jofie ?( cots— st §} ex;{ B fs
the subject5,7,9. The resummation method defined in Egs. E
(1)—(6) differs from [5] in the combination of Borel and \heregp is a coupling parameter proportional to the square
Padetechnlques and, if compared. to the remarkable investisf the electric field strengthge= eZEzlmg. Here,m, is the
gations in[7,9] on the resummation of QCD perturbation gjectron mass, and is the elementary charge. The natural
series, in the mtegrathn contour _used for the evaluation of it system §=c=1) is used. The imaginary part &{gg)
the generalized Borel integral. It is argued here that, wheRs proportional to the electron-positron pair-production am-
the Borel transform3) is analytically continued with Pade jitude per space-time intervéthere is, of course, also a
approximants(4), the contribution of poles lying off the on-antimuon pair-production amplitude, obtained by the

positive real axis has to be taken into account in order Qmaginary part of Eq(7) under the replacemem,—m
obtain consistent results in the resummatisee Fig. 1 In which is not discussed héreS(ge) has the follow?ng

[7,9] it i§ argued that the Borel integral should be evaluatedasymptotic expansion in the coupling parameter,
by principal value. It could appear that tk® contour cor-

responds to the principal-value prescription. However, this is

(D

o]

)

, N—oe, (9

not necessarily the case, if there are poles present which lie S(gE)~16[ > 41 Bon gptt

off the positive real axis(i.e., at t=z with Rez>0, n=0 (2n+4)(2n+3)(2n+2)

Im z;#0). The contribution of these poles modifies not only . . .

the imaginary, but also the real part of the final nonperturba\-'\lh_ereB2n+4 is a Bernoulli number. In view of the asymp-

tive result. Of course, when there are no poles lying off theotics

positive real axis, as is the case for the problems discussed in n

[7,9], then the principal-value prescription used[ih9] is 4" Bon -4l _ I'(2n+2) O(i

equivalent to theC, contour. Because the result obtained n3 pent4 4"

along Cy is real, this contour should be used whenever the

existence of an imaginary part is discouraged by physicalhe perturbative coefficients, which are nonalternating in

reasons. sign, diverge factorially in absolute magnitude. The
It is important to mention that the method presented herasymptotic serie€) for S(gg) is taken as the input series for

is not the only prescription currently available for the resum-the resummation proce$gqg. (1)], and a sequence of trans-

mation of divergent perturbative expansions in quantum fieldorms 7S,(gg) is evaluated using the prescriptigh). The

theory. For example, thé transformation[see Eq.(4) in  results have to be compared to the exact nonperturbative ex-

[11]] is a very useful method for the resummation of diver-pression7). This is done in Table | foge=0.05. The partial

gent perturbation series. Thetransformation has a number sums of the asymptotic seri¢8) are listed in the second

of appealing mathematical properties, including rapid anccolumn.
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TABLE |. Resummation of the asymptotic series for the QED  TABLE Il. Resummation of the model serie§l0) for
effective action(8) in a constant background electric field for y=2.3g=0.1 by the method indicated in E¢p) along the integra-
ge=0.05. Results in the third column are obtained by the methodion contour C,,. The partial sums are obtained from the
indicated in Eq(5) along the integration conto® ;. The partial  asymptotic serie$10).
sums in the second column are obtained from the asymptotic

series(8). n Partial sum TM(9)
0 Partial sum 75.(99) 2 0.445 451 0.393 554i 0.373 912
3 0.559 685 0.840 564 0.446 830

2 0.001 146 032 0.001 144 848 7.70x10™ Y7 4 0.640 410 0.764 942i 0.274 640

3 0.001 146 705 0.001 146 639 8.22x 10" * 5 0.703 981 0.765 330i 0.218 156

4 0.001 146951 0.001147 113 3.54x 10 8 6 0.759 669 0.763 01Ri 0.219 638

5 0.001 147087 0.001 147 264 1.93x 10 8 7 0.813594 0.762 186i 0.219 197

6 0.001 147195 0.001 147173 3.15x 10’ 8 0.870909 0.762 196i 0.219 126

7 0.001 147 310 0.001 147113 2.58x 10’ 9 0.937 322 0.762 224i 0.219 123

8 0.001 147 469 0.001 147 162 2.30x 10~ 7 10 1.020 707 0.762 225i 0.219 127

9 0.001 147 743 0.001 147 165 2.63< 10"’ 11 1.133528 0.762223i 0.219127
10 0.001 148 327 0.001 147 144 2.53x 10°7 12 1.297 220 0.762223i 0.219127
11 0.001 149 825 0.001 147 157 2.46x 107
12 0.001 154 375 0.001 147 15% 2.56x 10”7 exact 0.762 223 0.762223 0.219 127
13 0.001 170560 0.001 147 151 2.51x 10"/
14 0.001 237 137 0.001 147 156 2.51x 10~/ "
15 0.001 550 809 0.001 147 1532.53x 10/ _ n_
16 0.003 228 880 0.001 147 154 2.51x 10" NB(g)_ngO g'=11-9)
17 0.013 345316 0.001 147 154 2.52x 107
18 0.081 610937 0.001 147 1532.52x 10~ is a geometric series. The summation of geometric series
19 0.594 142 371 0.001 147 154 2.52x 107 inside and outside of the circle of convergence by Paule
20 4.852 426 276 0.001 147 154 2.52x 107 proximants is exact in all transformation orders 2. So, for

all n=2 the transformsT\,,(g) fulfill the equality 7V, (g)
exact 0.001 147 154 0.001 147 ¥542.52x 107 = — (1/g)exp(-1/g)T (0,— 1/g) = M(g), wherel (0x) is the

incomplete gamma functiofsee[17]), and the choice of the

contour €C_, or C,;) determines on which side of the
Numerical results from perturbation theory are normallybranch cut the incomplete gamma function is evaluated.

obtained by(optima) truncation of the perturbation series.  The asymptotic series,

For the example considere) the partial sums do not ac-

count for the imaginary part an@d) due to the divergence of I'(n+y)

the perturbative gxpar):sliaon, no improvement in tge final re- M(g)~ Z W”!gn' (10

sult could be obtained by adding more than the first seven

perturbative terms. It requires a valid resummation procedurgonstitutes a more interesting application of the resummation
to go beyond the accuracy obtainable by optimal truncationnethod thanV(g). On account of the asymptotics,
of the perturbation series. The transford$,(gg) displayed

in the third column of Table | apparently converge to the full I'(n+7y)
nonperturbative result given in E(7), and the nonperturba- WN
tive imaginary part, which corresponds to the pair-

production amplitude, is repr_oduced alt_hough the input serieg,e seriesM(g) serves as a model for the expected large-
(8) has purely real perturbative coefficients. order behavior of perturbative coefficients in quantum field

Two specific mathematical model series are consideregheory [see Eq.(2)]. The analytic summation of Eq10)
next. The series leads to

n’l1+0

1
ﬁ)), n—oo, (11)

J
S M(g)=T )( —) Fo(1,7:9), (12)
Mg)~ 2 nlg" (Q)=T(v){ 955/ Fo(17i9

n=0
where the hypergeometrigF, function has a branch cut
along the positive real axisee[17]). The imaginary part of
has been used as a paradigmatic example for nonalternatiigg. (12) for g>0 as a function ofg and y is ImM(g)
divergent series in the literatuf8,15,1§. This series can be =w(1—gy)g~ * lexp(1/g), where the integration is as-
resummed by the methd8). Moreover, this resummation is sumed to have been performed along the cont@uy. For
even exact for all transformation ordems=2. This can be C_j, the sign of the imaginary part is reversed. The numeri-
seen as follows. The Borel transform cal example considered here y5=2.3g=0.1. In Table I,
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numerical results are displayed for thén partial sums of the 20 coefficients of the perturbation series for the energy and
asymptotic serieg10) and the transformgM,(g) calcu- evaluating the first 20 transforms according to E3), esti-
lated according to Eq5) in the rangen=2, ...,12. While  mates for the real part of the ener(tark energy shiftand
the partial sums eventually diverge, the transfoffd,,(g)  the imaginary part of the energglecay width of the staje
exhibit apparent convergence to about six significant figuresnay be obtained. The apparent convergence of the first 20
in (n=12)th transformation order, and the transforms reprotransforms for the real part of the energy extends to 6—8
duce the imaginary part although the coefficients of the sesignificant figures, whereas the convergence of the imaginary
ries (10) are all real rather than complex. The integration ispart is much slowel2-3 significant figures In all cases
performed along the conto@, ;. The exact result in the last considered, both the real and the imaginary part of the en-
row of Table Il is obtained from Eq12). For the evaluation ergy obtained by resummation compare favorably with val-
of the transformsTM,,(g) it is crucial to use the contour ues for the decay width obtained by numerical diagonaliza-
C_., rather than a contour infinitesimally above the real axistion of the Hamiltonian matrix19—-21. Here we concentrate
For example, in order to obtain consistent numerical resultson the decay width, the full calculation will be described in
it is necessary to take into account the polestaa9.99 detail elsewhere. The atomic unit system is used in the se-
+i0.578 in (1=11)th transformation order, encountered in quel, as is customary for this type of calculatid8—21. In
the evaluation of the transforfiMy,(g) according to Eq. the atomic unit system, the unit of energy is"mgc?
(5), and the pole at=9.99+i0.495 in (1=12)th order for ~=27.211eV, wherex is the fine structure constant, and the
the evaluation offM;,(g). These poles approximately cor- unit for the electric field is the field strength felt by an elec-
respond to the triple pole at=1/(0.1)= 10 which would be tron at a distance of one Bohr radiag, to a nucleus of
expected in the casg=2. elementary charge, which is 1/4#%)(e/a3,,)=5.142
When an atom is brought into an electric field, the levels< 10**V/m (here, ¢, is the permittivity of the vacuuim
become unstable against auto-ionization, i.e., the energy ley- Evaluations have been performed for all atomic levels and
els £ acquire a widtH (that is to sayg— Re&—iT'/2 where field strengths of Table Il if23]. Three examples are pre-
T is the width. Perturbation theory cannot account for the sented here. For the ground state, at an electric field strength
width. The coefficients are real, not compl8]. An estab-  0f E=0.1 in atomic units, the imaginary part of the first 20
lished method for the determination of the width is by nu-transforms calculated according to H§) exhibits apparent
merical diagonalization of the Hamiltonian matfix9—24.  convergence td'=1.46(5)x 10 %, which has to be com-
It is argued here that the full complex energy eigenvaluepared tol'=1.45x 102 obtained from numerical diagonal-
including the width, can also be inferred from the divergentization of the Hamiltonian matrik19]. For theL shell state
perturbation series by the resummation method defined iWith quantum numbers;=0,n,=1m=0, at a field strength
Egs. (1)—(6), where the appropriate integration contour is of E=0.004, the first 20 transforms exhibit apparent conver-
C.,. Perturbative coefficients for the energy shift in arbi-gence to an imaginary part df =4.46(5)<10™° which
trarily high order can be inferred from the EqS), (13—  compares favorably t&=4.45< 10~ ° from [21]. The most
(15), (28)—(33), (59)—(67), (73) in [18]. interesting case is the statg=1,n,=0m=0, for which the
The symmetry of the problem suggests the introduction ofionalternating component of the perturbation series is sub-
the parabolic quantum numbatsg,n,, andm[22] (the prin-  leading. AtE=0.006, resummation of the complete pertur-
cipal quantum number is=n;+n,+m+1). Here, calcula- bation seriegincluding the leading alternating pafeads to
tions are performed for the ground state with parabolic quana decay width of =6.08(5)x 10~°, which is again consis-
tum numbersn,;=0, n,=0, m=0 and twoL shell states, tentwith the result of'=6.09x 10" ° from [21]. The contour
both of which are coherent superpositions of tieghd 22 C.1 is crucial, due to poles lying off the real axis.

states. One of th& shell states investigated here has the With the help of Carleman’s theoref4] it is possible to
parabolic quantum numbens,=1,n,=0, m=0, and the formulate a criterion which guarantees that there is a one-to-

otherL shell state has the quantum numbeis=0, n,=1,  One correspondence between a function and its associated

m=0. The Stark effect is interesting because, depending oAsymptotic seriessee for examplg25], Theorems XII.17
the atomic state, the perturbation series are either completefnd XI1.18 and the definition on p. 43 6], p. 410 in[27],
nonalternating in sigr(e.g., for the ground stateor they  Or the comprehensive and elucidating revigty). Let f(z)
constitute nonalternating divergent series with a subleadin§e @ function which is analytic in the interior and continuous
divergent alternating componefe.g., forn,=0, n,=1, m  On a sectorial regiorS={z||arg(z)|<km/2+¢,0<[z|<R}
=0), or the series are alternating with a subleading divergerff the complex plane for some>0. Let the functiorf have
nonalternating componene.g., forn,=1, n,=0, m=0).  an asymptotic expansiof(z)~=,_,c,z" (for z—0). The
The perturbation series for the Stark effect do not strictlyfunctionf obeys a strong asymptotic conditieof orderk) if
fulfill the assumptions of Eq(1), andthe successful resum- there are suitable positive constar@s and o such that
mation of these series might indicate that the method intro}f(z) —=p_,c,2"|<Co™ [ k(m+1)]!|z|™ holds for all
duced here is in fact more generally applicabléhe large- m and for allze S. The validity of such a condition implies
order asymptotics of the perturbative coefficients for thethat the function f(z) is uniquely determined by its
Stark effect are given in Eq#4,5) in [23]. In quantum field asymptotic seriegsee Theorem XI1.19 of26]). Typically,
theory, the alternating and nonalternating components correseries which entail nonperturbatitienaginary contributions
spond to ultravioletUV) and IR renormalons. Using the first do not fulfill the Carleman condition. The resulting ambigu-
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ity is reflected in the three integration contours in Fig. 1, onlystructure to IR and UV renormalons in quantum field theory,
one of which gives the physically correct result. respectively. It has been shown in each case that complete
It has not escaped our attention that specialized variantsonperturbative results, including the pair-production ampli-
of the method introduced here can be constructed in thosgide for electron-positron pairs and the atomic decay width,
cases where additional information about the perturbative cacan be inferred from the divergent nonalternating perturba-
efficients (large-order asymptotics, location of poles in thetjon series by the resummation method defined in Etjs-
Borel plane, etg.is available. _ _ (6). A mathematical model serig40), which simulates the
Finite and consistent answers in quantum field theory ar@xpected large-order growth of perturbative coefficients in
obtained after regularization, renormalization and resummagyantum field theorysee Eq(2)], can also be resummed by
tion. Using a resummation method, as shown in Tables | anghe proposed methogee Table ). In all cases considered,
Il, it is possible to go beyond the accuracy obtainable bythe full nonperturbative result involves an imaginary part,
optimal truncation of the perturbation series. The purpose Ofyhereas the perturbative coefficients are real. The advocated
resummation is to eventually reconstruct the full nonperturynethod of resummation makes use of the ‘Pagproxima-
bative result from the divergent perturbation sef@se also  tjon applied to the Borel transform of the divergent pertur-
[5]. I have examined two physical examples, the QED efyation series. Advantage is taken of the special integration

fective action in a constant background electric figih).  contoursC, (with j=—1,0,1) shown in Fig. 1.
(8)] and the Stark energy shift. The perturbation series for !

the Stark effect contains nonalternating and alternating diver- The author acknowledges helpful discussions with G.

gent contributions, which correspond in their mathematicaSoff, P. J. Mohr, and E. J. Weniger.
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