198 research outputs found
Bound states of 3He at the edge of a 4He drop on a cesium surface
We show that small amounts of 3He atoms, added to a 4He drop deposited on a
flat cesium surface at zero temperature, populate bound states localized at the
contact line. These edge states show up for drops large enough to develop well
defined surface and bulk regions together with a contact line, and they are
structurally different from the well-known Andreev states that appear at the
free surface and at the liquid-solid interface of films. We illustrate the
one-body density of 3He in a drop with 1000 4He atoms, and show that for
sufficiently large number of impurities, the density profiles spread beyond the
edge, coating both the curved drop surface and its flat base and eventually
isolating it from the substrate.Comment: 10 pages and 7 figures. Submitted to PR
Instabilities of infinite matter with effective Skyrme-type interactions
The stability of the equation of state predicted by Skyrme-type interactions
is examined. We consider simultaneously symmetric nuclear matter and pure
neutron matter. The stability is defined by the inequalities that the Landau
parameters must satisfy simultaneously. A systematic study is carried out to
define interaction parameter domains where the inequalities are fulfilled. It
is found that there is always a critical density beyond which the
system becomes unstable. The results indicate in which parameter regions one
can find effective forces to describe correctly finite nuclei and give at the
same time a stable equation of state up to densities of 3-4 times the
saturation density of symmetric nuclear matter.Comment: 20 pages, 5 figures, submitted to Phys.Rev.
Curvature effects on the surface thickness and tension at the free interface of He systems
The thickness and the surface energy at the free interface of
superfluid He are studied. Results of calculations carried out by using
density functionals for cylindrical and spherical systems are presented in a
unified way, including a comparison with the behavior of planar slabs. It is
found that for large species is independent of the geometry. The obtained
values of are compared with prior theoretical results and experimental
data. Experimental data favor results evaluated by adopting finite range
approaches. The behavior of and exhibit overshoots
similar to that found previously for the central density, the trend of these
observables towards their asymptotic values is examined.Comment: 35 pages, TeX, 5 figures, definitive versio
Structural and dynamical properties of superfluid helium: a density functional approach
We present a novel density functional for liquid 4He, properly accounting for
the static response function and the phonon-roton dispersion in the uniform
liquid. The functional is used to study both structural and dynamical
properties of superfluid helium in various geometries. The equilibrium
properties of the free surface, droplets and films at zero temperature are
calculated. Our predictions agree closely to the results of ab initio Monte
Carlo calculations, when available. The introduction of a phenomenological
velocity dependent interaction, which accounts for backflow effects, is
discussed. The spectrum of the elementary excitations of the free surface and
films is studied.Comment: 37 pages, REVTeX 3.0, figures on request at [email protected]
Variational Calculations for He Impurities on He Droplets
Variational Monte Carlo method is used to calculate ground state properties
of He droplets, containing 70, 112, 168, 240, 330, and 728 particles. The
resulting particle and kinetic energy densities are used as an input in the
Feynman-Lekner theory for He impurities. The kinetic energy density of
He atoms and the energy of the He surface states are compared with the
results of previous phenomenological calculations.Comment: 12 pages, in revtex 3.0, with 5 .ps figure
Shape Coexistence and the Effective Nucleon-Nucleon Interaction
The phenomenon of shape coexistence is discussed within the self-consistent
Hartree-Fock method and the nuclear shell model. The occurrence of the
coexisting configurations with different intrinsic shapes is traced back to the
properties of the effective Hamiltonian.Comment: 40 pages (16 text, 24 figures). The file may also be retrieved at
http://csep2.phy.ornl.gov/theory_group/people/dean/shape_coex/shapes.htm
Recognition of vitamin B metabolites by mucosal-associated invariant T cells
The mucosal-associated invariant T-cell antigen receptor (MAIT TCR) recognizes MR1 presenting vitamin B metabolites. Here we describe the structures of a human MAIT TCR in complex with human MR1 presenting a non-stimulatory ligand derived from folic acid and an agonist ligand derived from a riboflavin metabolite. For both vitamin B antigens, the MAIT TCR docks in a conserved manner above MR1, thus acting as an innate-like pattern recognition receptor. The invariant MAIT TCR a-chain usage is attributable to MR1-mediated interactions that prise open the MR1 cleft to allow contact with the vitamin B metabolite. Although the non-stimulatory antigen does not contact the MAIT TCR, the stimulatory antigen does. This results in a higher affinity of the MAIT TCR for a stimulatory antigen in comparison with a non-stimulatory antigen. We formally demonstrate a structural basis for MAIT TCR recognition of vitamin B metabolites, while illuminating how TCRs recognize microbial metabolic signatures
Toll-Like Receptor 8 Agonist and Bacteria Trigger Potent Activation of Innate Immune Cells in Human Liver
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The study was supported by a Grant core funding from the Agency for Science Technology and Research (A*STAR, Singapore) and a Singapore Translational Research Investigator Award (NRMC/StaR/013/2012) to AB as well as NIHR Biomedical Centre, Oxford, WT 091663MA, NIAID1U19AI082630-01, Oxford Martin School funding and an NIHR Senior Investigator award to PK
Endosomal MR1 Trafficking Plays a Key Role in Presentation of Mycobacterium tuberculosis Ligands to MAIT Cells
Mucosal-Associated Invariant T (MAIT) cells, present in high frequency in airway and other mucosal tissues, have Th1 effector capacity positioning them to play a critical role in the early immune response to intracellular pathogens, including Mycobacterium tuberculosis (Mtb). MR1 is a highly conserved Class I-like molecule that presents vitamin B metabolites to MAIT cells. The mechanisms for loading these ubiquitous small molecules are likely to be tightly regulated to prevent inappropriate MAIT cell activation. To define the intracellular localization of MR1, we analyzed the distribution of an MR1-GFP fusion protein in antigen presenting cells. We found that MR1 localized to endosomes and was translocated to the cell surface upon addition of 6-formyl pterin (6-FP). To understand the mechanisms by which MR1 antigens are presented, we used a lentiviral shRNA screen to identify trafficking molecules that are required for the presentation of Mtb antigen to HLA-diverse T cells. We identified Stx18, VAMP4, and Rab6 as trafficking molecules regulating MR1-dependent MAIT cell recognition of Mtb-infected cells. Stx18 but not VAMP4 or Rab6 knockdown also resulted in decreased 6-FP-dependent surface translocation of MR1 suggesting distinct pathways for loading of exogenous ligands and intracellular mycobacterially-derived ligands. We postulate that endosome-mediated trafficking of MR1 allows for selective sampling of the intracellular environment.Career Development Award: (#IK2 CX000538); U.S. Department of Veterans Affairs Clinical Sciences Research and Development Program (MJH); U.S.Department of Veterans Affairs Biomedical Laboratory Research and Development Program (DML) Merit Award: (#I01 BX000533); American Lung Association: (RT-350058)
- …