127 research outputs found

    Explanation and observability of diffraction in time

    Get PDF
    Diffraction in time (DIT) is a fundamental phenomenon in quantum dynamics due to time-dependent obstacles and slits. It is formally analogous to diffraction of light, and is expected to play an increasing role to design coherent matter wave sources, as in the atom laser, to analyze time-of-flight information and emission from ultrafast pulsed excitations, and in applications of coherent matter waves in integrated atom-optical circuits. We demonstrate that DIT emerges robustly in quantum waves emitted by an exponentially decaying source and provide a simple explanation of the phenomenon, as an interference of two characteristic velocities. This allows for its controllability and optimization.Comment: 4 pages, 6 figure

    Classical picture of post-exponential decay

    Get PDF
    Post-exponential decay of the probability density of a quantum particle leaving a trap can be reproduced accurately, except for interference oscillations at the transition to the post-exponential regime, by means of an ensemble of classical particles emitted with constant probability per unit time and the same half-life as the quantum system. The energy distribution of the ensemble is chosen to be identical to the quantum distribution, and the classical point source is located at the scattering length of the corresponding quantum system. A 1D example is provided to illustrate the general argument

    Engineering fast and stable splitting of matter waves

    Get PDF
    When attempting to split coherent cold atom clouds or a Bose-Einstein condensate (BEC) by bifurcation of the trap into a double well, slow adiabatic following is unstable with respect to any slight asymmetry, and the wave "collapses" to the lower well, whereas a generic fast chopping splits the wave but it also excites it. Shortcuts to adiabaticity engineered to speed up the adiabatic process through non-adiabatic transients, provide instead quiet and robust fast splitting. The non-linearity of the BEC makes the proposed shortcut even more stable

    Cold atom dynamics in crossed laser beam waveguides

    Get PDF
    We study the dynamics of neutral cold atoms in an LL-shaped crossed-beam optical waveguide formed by two perpendicular red-detuned lasers of different intensities and a blue-detuned laser at the corner. Complemented with a vibrational cooling process this setting works as a one-way device or "atom diode"

    Fast generation of spin-squeezed states in bosonic Josephson junctions

    Get PDF
    We describe methods for fast production of highly coherent-spin-squeezed many-body states in bosonic Josephson junctions (BJJs). We start from the known mapping of the two-site Bose-Hubbard (BH) Hamiltonian to that of a single effective particle evolving according to a Schr\"odinger-like equation in Fock space. Since, for repulsive interactions, the effective potential in Fock space is nearly parabolic, we extend recently derived protocols for shortcuts to adiabatic evolution in harmonic potentials to the many-body BH Hamiltonian. The best scaling of the squeezing parameter for large number of atoms N is \xi^2_S ~ 1/N.Comment: Improved and enlarged version, accepted at Phys. Rev.

    Optimal trajectories for efficient atomic transport without final excitation

    Get PDF
    We design optimal harmonic-trap trajectories to transport cold atoms without final excitation, combining an inverse engineering techniqe based on Lewis-Riesenfeld invariants with optimal control theory. Since actual traps are not really harmonic, we keep the relative displacement between the center of mass and the trap center bounded. Under this constraint, optimal protocols are found according to different physical criteria. The minimum time solution has a "bang-bang" form, and the minimum displacement solution is of "bang-off-bang" form. The optimal trajectories for minimizing the transient energy are also discussed.Comment: 10 pages, 7 figure

    Quantum neural networks with multi-qubit potentials

    Get PDF
    We propose quantum neural networks that include multi-qubit interactions in the neural potential leading to a reduction of the network depth without losing approximative power. We show that the presence of multi-qubit potentials in the quantum perceptrons enables more efficient information processing tasks such as XOR gate implementation and prime numbers search, while it also provides a depth reduction to construct distinct entangling quantum gates like CNOT, Toffoli, and Fredkin. This simplification in the network architecture paves the way to address the connectivity challenge to scale up a quantum neural network while facilitates its training.Comment: 11 pages, 6 figure
    • …
    corecore