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Classical picture of postexponential decay
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Postexponential decay of the probability density of a quantum particle leaving a trap can be reproduced
accurately, except for interference oscillations at the transition to the postexponential regime, by means of an
ensemble of classical particles emittedwith constant probability per unit time and the same half-life as the quantum
system. The energy distribution of the ensemble is chosen to be identical to the quantum distribution, and the
classical point source is located at the scattering length of the corresponding quantum system. A one-dimensional
example is provided to illustrate the general argument.

DOI: 10.1103/PhysRevA.81.042714 PACS number(s): 03.65.Nk, 03.75.−b

I. INTRODUCTION

Exponential decay is ubiquitous in quantum physics and
constitutes the typical dynamical pattern for unstable systems.
Theory predicts deviations at short times, related to the
Zeno effect, and also at long times, with significant implica-
tions for cosmology [1], hidden variables [2], non-Hermitian
formulations [3,4], and radioactive-dating methods [5]. On
the experimental side, the postexponential regime, generally
algebraic, has been elusive. There are few claims of having
observed it [6], which has engendered much effort to explain
why or to improve its observability [7,8].

Classically, exponential decay arises from a constant decay
probability per unit time. What has been lacking so far has
been a correspondingly simple, physically appealing classical
picture of postexponential decay. The purpose of this article
is to provide such a framework by following up on an old
suggestion of Newton’s [9,10].

The standard quantum-mechanical derivations of postexpo-
nential decay are not very helpful in suggesting such a picture.
The early reliance upon the Paley-Wiener theorem [11] is not
very illuminating from a physical perspective and it provides
bounds, not precise predictions. Similarly postexponential
decay can be attributed mathematically to the fact that the
pole contribution to exponential decay is eventually compa-
rable to or smaller than a line integral, whose value arises
predominantly from a saddle point at threshold, associated
with slow particles [7,12,13]. This is surely more intuitive, yet
not fully satisfying for those seeking a pictorial, rather than a
complex variable, understanding of the phenomenon [14]. In
this vein, Hellund proposed an electrostatic analog [15] which
relates quantumemission of radiation to the damped oscillation
of a charge describable in purely classical (stochastic) terms
and interprets the deviation from exponential decay as a
“straggling phenomenon” characteristic of a diffusion process.
However, quantum dynamics cannot generally be reduced to
a classical diffusion process. Jacob and Sachs [16], in their
field-theoretical analysis of a scalar particle coupled to two
pions, found nonexponential terms decaying like t−3/2 in
the amplitude. Their explanation was geometrical: a particle
produced at position �r , having velocity between v and dv, will
appear after time t within a spherical shell of radius vt centered
on �r and thickness tdv. The probability that it will be found in a

small volume element within the shell is inversely proportional
to its volume, 4πt3v2dv. Hence the probability amplitude is
proportional to t−3/2. This cannot be a universal explanation
though, since the decay amplitude in one-dimensional (1D)
models behaves generically like t−3/2, whereas the previous
argument translated to 1D would imply only t−1/2.

Postexponential power-law behavior is sometimes inter-
preted as expressing the dominance of free motion [17,18].
However explicit calculations of the long-time propagator for
specific potential scattering models show that in general both
free and scattering terms are needed in the propagator to
reproduce the correct results [19].

A general argument that justifies nonexponential decay is
the so-called “initial state reconstruction” [20,21]. Deviations
from exponential decaywould be the consequence of Feynman
paths returning to the initial state from the orthogonal, decay-
product subspace. This argument alone, however, makes no
quantitative predictions of the observed behavior and is applied
to the survival probability, which is not always easy to observe.

In this article we take up and develop a frequently
overlooked observation by Newton making use of classical
mechanics [9,10]. Newton noted that, if a point source emits
classical particles with an exponential decay law and with
a suitable velocity distribution, the current density away
from the source will eventually depend on time according
to an inverse power law. Indeed, we shall show that by
adjusting the parameters according to the quantum system,
the classical model accurately reproduces the onset, power
law, and intensity of postexponential decay of the quantum
probability density of a particle escaping from a trap. For
simplicity we assume that the particle is restricted to the
half-line, r � 0, as in quantum s-wave scattering. We shall
also assume that the initial quantum state is orthogonal to any
bound states so that it must eventually decay (escape) fully
from the trap.

II. CLASSICAL AND QUANTUM SOURCES AND DECAY

Consider first a source at r = 0 which emits classical
particles with a definite velocity v from t0 = 0 so that the
fraction of particles emitted between t0 and t0 + dt0 is

P (t0)dt0 = dt0

τ
e−t0/τ , (1)
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where τ is the emission lifetime. The spatial probability density
observed at point r , at time t , is

Pc,v(r,t) = 1

τv
e−(t−r/v)/τ θ

(
t − r

v

)
, (2)

where θ is the step function. For the more general case in
which the emitted particles have a velocity distribution ρ(v),

Pc(r,t) =
∫ ∞

r/t

dv ρ(v)
1

vτ
e−(t−r/v)/τ , (3)

or, using r = v(t − t0),

Pc(r,t) =
∫ t

0
dt0

1

(t − t0)τ
ρ

(
r

t − t0

)
e−t0/τ . (4)

The behavior for t ≫ τ of this integral can be expressed as
an asymptotic series,

Pc(r,t) ∼
m∑

n=0

τn[g(n)(0) − g(n)(t)e−t/τ ], (5)

where

g(t0) ≡ 1

t − t0
ρ

(
r

t − t0

)
, (6)

and g(n) is its nth derivative with respect to t0. The leading
term asymptotically is

Pc(r,t) ∼ g(0) = 1

t
ρ

( r

t

)
. (7)

This is equivalent to Newton’s result [9,10] (we use the
probability density rather than the current density). To advance
from here, consider now the decay from a quantum trap of a
system prepared in a normalized nonstationary state |�0〉. The
wave function of this state at a point r and time t is

�(r,t) = 〈r|e−iH t/h̄|�0〉, (8)

with corresponding probability density Pq(r,t) = |�(r,t)|2.
Using stationary states normalized in energy uE(r) [such
that 〈uE′ |uE〉 = δ(E − E′)] and inserting the completeness
relation,

�(r,t) =
∫ ∞

0
dE 〈r|uE〉〈uE|�0〉e−iEt/h̄. (9)

The uE are solutions of the s-wave, radial Schrödinger
equation, [

d2

dr2
− v(r) + k2

]
uE(r) = 0, (10)

where v(r) = (2m/h̄2)V (r) and k2 = (2m/h̄2)E. As in [22],

it is convenient to define new solutions wk(r) = h̄

√
k
m

uE(r)

normalized as 〈wk′ |wk〉 = δ(k − k′), which obey the boundary
condition

lim
r→∞ wk(r) =

√
2

π
sin[kr + δ(k)], (11)

where δ(k) is the phase shift of the s partial wave. These
solutions are related to the regular solutions φ̂k(r) [which
behave like the Riccati-Bessel function ĵ0(kr) as r → 0],

wk(r) =
√

2

π

φ̂k(r)

|f (k)| , (12)

where f (k) = |f (k)| exp(−iδ) is the Jost function, as defined,
for example, in Taylor [23]. It gives the relative normalization
between solutions having unit incoming flux at infinity and
solutions that have slope k at the origin. The partial-wave
S-matrix element is S(k) = f (−k)/f (k). Zeroes of f (k) in
the upper half complex momentum plane correspond to bound
states, while those in the lower half plane are associated with
scattering resonances.

For an initially localized nonstationary state

〈r|�0〉 = 0 for r > ra, (13)

the wave function can be written as

�(r,t) = 2m

πh̄2

∫ ∞

0
dE

1

k
φ̂k(r)

〈φ̂k|�0〉
|f (k)|2 e−iEt/h̄, (14)

which has a form similar to the survival amplitude obtained
in [22]. They have generically the same asymptotic behavior
at long times, which corresponds to an energy distribution
ρ(E) = |〈uE|�0〉|2 ∼ E1/2, asE → 0. This long-time asymp-
totic behavior is governed by the properties when k → 0 of the
integrand of Eq. (14). For “well-behaved” potentials, (those
falling off faster than r−3 when r → ∞ and less singular
than r−3/2 at the origin), the � = 0 Jost function tends to a
constant when k → 0. [In the exceptional case that a zero
energy resonance occurs, f (k = 0) = 0.] The φ̂k behave near
the origin as Ricatti-Bessel functions, ĵ0(kr), and are therefore
linear in k. The behavior of the integrand near threshold is thus
∼E1/2. Following the same steps as in the derivation of the
asymptotic behavior of the survival amplitude in [22], one finds
that the position probability density behaves likePq(r,t) ∼ t−3

at long times.
The energy distribution corresponds asymptotically to a

velocity distribution since all particles are eventually released.
The two distributions are related by

	(E)dE = ρ(v)dv. (15)

Setting E = 1
2mv2, m being the mass of the emitted particles,

makes 	(E) ∼ E1/2 ⇒ ρ(v) ∼ v2. Going back to Eq. (7)
and considering the long-time regime t >>> τ , the classical
particle velocity can be approximated by v = r/t , so ρ(r/t) =
ρ(v), which implies, as expected, that at large t the main
contribution to the position probability density is from slow
particles. If we consider the same dependence as in the
quantum case, ρ(v) ∼ v2, Eq. (7) implies an asymptotic
behavior Pc(r,t) ∼ t−3, that is, the classical model leads to the
same power-law dependence as the quantum one. Moreover,
in the following we shall see that it can be adjusted to provide
the correct amplitude factor as well.

Let us return to Eq. (14) and write the bra-ket factor as

〈φ̂k|�0〉 =
√

π

2
|f (k)|〈wk|�0〉, (16)

Using Eq. (12) and the asymptotic behavior given by Eq. (11),
the wave function for r → ∞ may be written as

�(r,t) ∼
√

2

π

m

h̄2

∫ ∞

0
dE

1

k
〈wk|�0〉 sin[kr + δ(k)]e−iEt/h̄.

(17)
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At low energy, the phase shift δ(k) is well described by the
effective range expansion

k cot δ(k) = − 1

a0
+ 1

2
r0k

2 + · · · , (18)

where a0 is the scattering length while r0 is called the effective
range of the potential function. The asymptotic form of the
resulting integral can be obtained from the Riemann-Lebesgue
lemma [24]. Only the main term which depends on the k → 0
behavior of the integrand is kept. This gives a probability
density of the form

Pq(r,t) ∼ β [r − a0]
2 1

t3
, (19)

where β is the strength factor for the asymptotic dependence
of the velocity distribution, ρ(v) ∼ βv2, which will depend on
the particular state and potential. It has units of [β] ∼ v−3. In
the approximation v = r/t we can write

ρ(v) ∼ β
r2

t2
. (20)

Introducing this in Eq. (7) we obtain for the classical
probability density at long times

Pc(r,t) ∼ β
r2

t3
. (21)

Compare now Eqs. (19) and (21), and to avoid confusion, let
us rewrite r → rq for the quantum case and r → rc for the
classical one. We see that if the classical coordinate is shifted
by a0, rc = rq − a0, the classical model will reproduce the
quantum probability density. Equivalently, Pc(r) = Pq(r) at
long times if the classical source is not at the origin but is
displaced by the scattering length a0.

In the exceptional case of a potential with a zero energy
resonance a0 → ∞, and therefore the first term on the r.h.s.
of Eq. (18) is absent. This causes the Jost function to have a
simple zero at k = 0 (see [23]), and therefore |〈wk=0|�0〉|2 is
nonvanishing. We then find, instead of Eq. (19), that

Pq(r,t) ∼ |〈wk=0|�0〉|2m/(h̄t), (22)

which is again in agreement with the classical expression (7)
taking ρ(v = 0) = |〈wk=0|�0〉|2m/h̄.

III. MODEL CALCULATION

We now check the general argument developed in Secs. I
and II, in the specific case of Winter’s δ-barrier model [13]
which is described in Fig. 1. The initial state is an eigenstate
of the infinite square well potential,

〈r|�0〉 =
{√

2
L
sin

(
nπr
L

)
r � L

0 r � L
, (23)

and the k-normalized basis functions are

〈r|wk〉 = e−iδ(k)

√
2

π
×

{
sin(kr)/f (k) r � L

(i/2)[e−ikr − S(k)eikr ] r � L
,

(24)

FIG. 1. (Color online) Scheme of theWintermodel. (a) The initial
state is the ground state of an infinite square well. (b) One of the walls
is replaced by a δ barrier V = V0δ(r − L).

where S(k) = f (k)∗/f (k), and the Jost function for this model
is

f (k) = 1 + α

2ik
(e2ikL − 1), (25)

with α = 2mV0/h̄
2. ρ(v) = |〈wk|�0〉|2m/h̄ can be calculated

exactly and takes the form

ρ(v) = Lm

πh̄

k2

k2 + αk sin(2kL) + α2 sin2(kL)

×
[
2nπ sin(kL)

k2L2 − n2π2

]2

. (26)

From here the exact classical probability density is calculated
numerically using Eq. (4), whereas the quantum density is
given by the squaremodulus of Eq. (9). In the large-t region the
probability density has analytical expressions in both quantum
and classical cases given by Eqs. (19) and (21), respectively.
The coefficient β is easy to find from Eq. (26) in the limit
v → 0,

β = 4m3L3

(1 + αL)2n2π3h̄3 . (27)

Also, Eq. (24) and S(k) = e2iδ(k) give for the Winter model the
explicit source shift

a0 = αL2

1 + αL
, (28)

which, for α � 0, lies between 0 (for αL → 0, no barrier) and
L (for large αL, strong confinement).

Finally, the quantum and classical probability densities
both take (shifting the classical point source by a0) the
postexponential form

Pq,c(r,t) ∼ 4

n2(1 + αL)2

(
Lm

πh̄

)3 (
r − αL2

1 + αL

)2
1

t3
. (29)

The agreement is illustrated in Fig. 2, where the exact decay
curves (numerically integrated) are plotted. The classical
density (triangles) indeed reproduces the quantum behavior
(solid line) if the source shift is taken into account. For
comparison we also show a curve in which the shift is not
applied, so that the classical source remains at r = 0 (circles).
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FIG. 2. (Color online) The exact probability density obtained
numerically versus t : quantum result, solid (red) line; classical
solution including the source shift, Eq. (28), triangles; classical
solution without applying the source shift, circles. Parameter values:
h̄ = 1, m = 1/2, L = 1, α = 5, n = 1, r = 2, and τ = 0.5.

Taking the same value for τ , we see that the classical model
also agrees with the quantum one in the pre-exponential and
exponential zones (0 < t < 5 in the drawing). The classical
model differs only in the absence of oscillations which occur
at the onset of postexponential behavior, due to quantum
interference. The asymptotic behavior is indistinguishable on
the scale of the figure from the analytical expression Eq. (29).

The exceptional case of a zero energy resonance corre-
sponds to an attractive δ with α = −1/L. In this case from
Eqs. (7) and (22) we get

Pq,c(x,t) ∼ 4Lm

h̄n2π3t
(30)

for both the classical and quantum cases (see Fig. 3). If α

is close to the critical value, say α = −1/L + ε, the decay
follows a t−1 decay law for some substantial period of time
until the t−3 decay eventually dominates (see Fig. 4). The
smaller ε is, the longer the t−1 behavior persists.

IV. DISCUSSION

To summarize, the foregoing results provide an intuitive
physical picture and quantitative description of postexponen-
tial decay of the probability density at points distant from
the source. We have developed the classical model suggested
by Newton so as to achieve an accurate match between
classical and quantum decays. Purely exponential decay from
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FIG. 3. (Color online) Logarithmof the probability density versus
t , for an attractive δ potential having a zero energy resonance: exact
quantum numerical solution, solid red line; classical model solution,
triangles. The long-time behavior is indistinguishable from Eq. (30).
α = −1, τ = 0.2, and other parameters are as in Fig. 2.
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FIG. 4. (Color online) Logarithmof the probability density versus
t for a δ potential slightly less attractive than required to produce a
zero energy resonance: exact quantum numerical solution (solid blue
line) and approximate power-law decays proportional to t−1 [Eq. (30),
dashed red line] and t−3 [Eq. (29), dotted green line]. α = −0.98,
r = 10, τ = 0.2, and other parameters are as in Fig. 2.

a source leads naturally, because of dispersion associated with
a velocity distribution of the emitted particles, to the same
power-law decay in quantum and classical scenarios. Quantum
mechanics is required to provide the emission characteristics,
but initial-state reconstruction (ISR) plays no role in the
classical, purely outgoing dynamics. We have checked with
the methodology of [25], that ISR terms are negligible in the
postexponential range of times, in the quantum calculation
of Fig. 2. This contrasts with their relevance to the survival
probability [25] and indicates different mechanisms for the
transition to postexponential decay inside and outside the
source. Indeed, the survival probability (calculated either
as |〈�(0)|�(t)〉|2 or |〈r|�(t)〉|2 with r < L) is still in its
exponential regime when the transition shown in Fig. 2 (at
r = 2) takes place; that is, the purely exponential decay
hypothesis (1) for the classical source is justified, and the onset
of the postexponential regime of survival within the trap cannot
causally affect the transition observed in the density outside the
source.

Due to recent advances in lasers, semiconductors,
nanoscience, and cold atoms,microscopic interactions are now
relatively easy to manipulate, decay parameters have become
controllable, and postexponential decay has become more
accessible to experimental scrutiny and/or applications [8].
Under appropriate conditions it could become the dominant
regime and be used to speedup decay via an anti-Zeno effect
[26]. Moreover, recent experiments on periodic waveguide
arrays provide a classical, electric field analog of a quan-
tum system with exponential decay [27,28] where the
postexponential region could be studied in a particularly
direct way.
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