
PHYSICAL REVIEW A 83, 043608 (2011)

Explanation and observability of diffraction in time
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Diffraction in time (DIT) is a fundamental phenomenon in quantum dynamics due to time-dependent obstacles
and slits. It is formally analogous to diffraction of light, and is expected to play an increasing role in the design
of coherent matter wave sources, as in the atom laser, to analyze time-of-flight information and emission from
ultrafast pulsed excitations, and in applications of coherent matter waves in integrated atom-optical circuits.
We demonstrate that DIT emerges robustly in quantum waves emitted by an exponentially decaying source and
provide a simple explanation of the phenomenon, as an interference of two characteristic velocities. This allows
for its controllability and optimization.
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I. INTRODUCTION

Diffraction in time (DIT) is a fundamental quantum dynam-
ical effect first studied by Moshinsky [1]. One-dimensional
matter waves released through a time-modulated aperture or
encountering a time-dependent obstacle (for two-dimensional
and three-dimensional cases, see Refs. [2,3]) show temporal
quantum penumbras and interference patterns similar to the
diffraction of light by spatial slits and obstacles. Understanding
and controlling DIT is becoming more relevant as a result
of the increasing manipulability of coherent matter waves,
in particular in ultracold atomic gases and/or with ultrashort
laser pulses. DIT will affect, for example, the intended
applications of atom lasers [4], dynamics of matter waves
emitted by ultrashort laser excitations [5], matter-wave circuits
[6], and time-of-flight techniques [7]. DIT may also lead to
temporal versions of diffractometers, grating spectrometry,
and holography.

The original and most studied setting for DIT is the
Moshinsky shutter (MS). It consists of the sudden release,
by opening a shutter, of a semi-infinite plane-wave beam
characterized by a “carrier” velocity. The particle density as a
function of time at an observation point is formally analogous
to spatial Fresnel diffraction by a sharp edge [1]. If the shutter,
when closed, has reflection amplitude R = 1, the same results
are obtained from a point source with a sharp onset and
constant emission thereafter [8]. Many works have applied
and modified MS to study different quantum transients and,
adding a potential, resonance scattering, buildup and decay,
and tunneling dynamics (see, e.g., Refs. [9,10] and reviews
in [8,11]). Experimentally, a DIT oscillatory pattern was first
observed by Dalibard and coworkers with cold atoms falling
by gravity and bouncing off a mirror consisting of evanescent
light that could be switched on and off [12]. DIT through a
related time-energy relation has been observed for cold neutron
experiments too [7]. Interference from two time slits and time
analogs of diffraction from a grating have been described for
cold atoms [12,13] and ionizing atoms with ultrashort laser
pulses [5]. There are also analogs of the original MS in the
field of coherent transients due to frequency-chirped weak
lasers [14].

DIT may be suppressed or averaged out by apodization,
noise and decoherence, or unsharp carrier velocity distribu-

tions [8,15], so the observability ofMS-DITwithmatter waves
has been considered a difficult task [8]. We shall see, however,
that the effect is rather robust and occurs quite generally in
waves emitted by an exponentially decaying resonance.

A second problematic aspect of MS-DIT is the lack of a
simple and intuitive understanding of the phenomenon. The
usual, geometrical “explanation” in terms of a Cornu spiral
[1,2,8] does not provide a simple physical picture although
some insight is gained by its construction via Fresnel time
zones and the Huygens principle, as in spatial diffraction
[2]. Furthermore, an attempt was made in [16] to seek
an explanation in terms of the Wigner distribution but, as
recognized by the authors, the interpretation of the results
remained ambiguous due to the lack of positivity of theWigner
function.

In this paper we address the observability and interpretation
of DIT. They are linked to each other since a simple physical
explanation of DIT will also provide the key to observing
and controlling it. The starting point is the realization that
systems that decay exponentially due to a resonance, such as
cold atoms in magnetic or optical traps [17] escaping from
their initial confinement, may show DIT at a distance from the
trap. The density or flux oscillations will be identified as an
interference effect characterized quantitatively with a simple
analytical model [18]. We shall thus be able to predict and
design optimal conditions for its observability, and treat on
the same footing the standard constant emission after a sharp
onset, and the exponentially decaying source, by modifying
continuously the imaginary part of the emission pole. Figure 1,
discussed later in more detail, shows the unnormalized density
at an observation point away from the source. The upper curve
corresponds to ordinary MS-DIT oscillations. The amplitude
of the oscillations at the observation point decreases with time,
and their frequency depends on time, tending to a constant. The
other two curves correspond to exponentially decaying sources
with different lifetimes. The oscillations are essentially the
same as in the standard MS, modulated by the exponential
decay.

II. THE EXPONENTIALLY DECAYING SOURCE MODEL

We shall use a model that was originally devised to
study deviations from exponential decay [18]. We provide
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E. TORRONTEGUI, J. MUÑOZ, YUE BAN, AND J. G. MUGA PHYSICAL REVIEW A 83, 043608 (2011)

FIG. 1. (Color online) Unnormalized density versus time at x =
1000 for a constant or exponentially decaying source.

here its main features. It captures the essence of resonance
decay from a trap and describes analytically the external
wave function without the complications and peculiarities of
particular confinements. We adopt the notation in [18] with
dimensionless position x, time t , and wave functionψ obeying
formally a Schrödinger equation for a particle of mass 1/2 and
h̄ = 1,

i
∂ψ(x,t)

∂t
= −∂2ψ(x,t)

∂x2
. (1)

The unit of length is the inverse of the real part of the carrier
wave number and the unit of time the carrier period divided
by 2π . The complex dimensionless wave number k0 = k0R +
ik0I and frequency of the carrier ω0 = ω0R + iω0I , obey the
dispersion relation,

ω0 = k20 = (1+ ik0I )2, (2)

so ω0R = 1 − k20I and ω0I = 2k0I , with k0I < 0 and k0R = 1.
The exact unnormalized solution to the Schrödinger equation
for the free particle subjected to the source boundary condition
ψ(0,t) = e−iω0t&(t), ω0R > 0,ω0I < 0, can be constructed
by a superposition of plane waves. The resulting integral is

ψ(x,t) = 1
2e

ik2s t
[
w(−u

(+)
0 )+ w(−u

(−)
0 )

]
, (3)

where w(z) := e−z2erfc(−iz), u
(±)
0 = ±(1+ i)

√
t/2k0(1 ∓

τ/t), and ks = x/2t , τ = x/2k0 are a “saddle point” wave
number and a complex characteristic time. For an observation
point x, the saddle velocity is time dependent, vs = 2ks =
x/t . Figure 1 shows the unnormalized density |ψ(x,t)|2 for
different k0I to illustrate the essential continuity of oscillation
phenomena when varying k0I . If one particle is emitted, the
normalized wave function is

ψ̃(x,t) =
[∫ ∞

0
dt J (0,t)

]−1/2

ψ(x,t), (4)

where J (x,t) is the dimensionless flux, J (x,t) =
2 Im[ψ∗(x,t) ∂ψ(x,t)

∂x
].

III. THE ESSENCE OF DIT

To find the essence of DITwemay now perform an analysis
technically similar to the one for tunneling times [8], with
different aim, system, and results. The wave function ψ ,
for times shorter and larger than |τ | [18], can be accurately

approximated by contributions from the two critical points of
its defining integral, saddle, and pole,

ψ(x,t) = ψs(x,t)+ ψ0(x,t)&[Im(u(+)
0 )], (5)

where the saddle ψs and pole ψ0 wave functions are
defined as

ψs(x,t) = (2t/π )1/2τeik
2
s t /[(i − 1)k0(t2 − τ 2)],

(6)
ψ0 = e−iω0t eik0x.

Due to contour deformation along the steepest descent path
from the saddle, the pole term contributes from the time when
Im(u(+)

0 ) = 0, tc = x/[2(1+ k0I )], and decays exponentially
thereafter. In a pictorial, classical association [19], the particle
arriving at (x,t) with velocity v0 = 2 must have been released
at a time x/v0 from the source which emits particles expo-
nentially. The saddle velocity x/t is the one required for a
classical particle released from (0,0) to arrive at (x,t). For a
given x each time t corresponds to a different and slower saddle
trajectory as time advances. Saddle trajectories may thus be
pictured as the result of a burst emerging from the source
with all possible velocities at t = 0. These classical pictures
are useful but, unlike long-time deviations from exponential
decay [19], DIT cannot be explained by them alone. It is a
quantum interference phenomenon as shown by the structure
of the unnormalized density,

|ψ(x,t)|2 = |ψs(x,t)|2 + |ψ0(x,t)|2&[Im(u+0 )]

+ 2Re[ψs(x,t)ψ∗
0 (x,t)]&[Im(u+0 )], (7)

where the asterisk denotes complex conjugation. The interfer-
ence term is

2Re[ψsψ
∗
0 ] =

√
t

π

2β(x,t)
16|ω0|2t4 + x4 − 8t2x2ω0R

×
[
(8ω0Rxt

2 − 2x3) cosφ + 8ω0I xt
2 sinφ

]
,

(8)

where φ(x,t) = (ω0R + k2s )t − x − 3π
4 , and β(x,t) =

eω0I t−k0I x . Light does not show DIT in vacuum because there
is no dispersion and no interference of this kind.

Figure 2 shows the agreement at times larger and shorter
than |τ | between exact and approximate wave functions. The
pole and saddle terms separately do not oscillate in time,

FIG. 2. (Color online) Normalized probability densities versus
time for k0 = 1 − 0.0015i at x = 1000. Exact (red solid line),
approximate [Eq. (7); black dashed line], saddle term (blue circles),
pole term (orange triangles), and interference term [Eq. (8); green
squares].
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whereas the interference term, Eq. (8), reproduces accurately
the DIT oscillations.

IV. CHARACTERIZATION AND OBSERVABILITY OF DIT

The frequency of the DIT oscillation depends on the
interference of the saddle and pole frequencies k2s and ω0R
and, as ks depends on time, the DIT oscillation period is not
constant. From Eq. (8) we can infer the position of the nth
maximum. For |k0I | ≪ 1, the sinφ term of Eq. (8) tends to
vanish so the DIT oscillations are essentially due to the cosφ
term. The maxima correspond to φ(x,Tn) = 2nπ at times,

Tn=
(3+ 8n)π + 4x+

√
[(3+ 8n)π + 4x]2 − 16ω0Rx2

8ω0R
,

(9)

where n = 0,1,2, . . . (n = 0 is for the principal maximum).
The interval Tn+1,n ≡ Tn+1 − Tn between two consecutive
maxima is in good agreement with the exact, numerically
calculated period (see Fig. 3). The small discrepancy at n = 0
can be attributed to the dependence on time of the factors
multiplying cosφ and the proximity of |τ |.

For large times the period of the DIT oscillations tends to
the carrier period, lim

n→∞
Tn+1,n = 2π/ω0R . The amplitude of

the oscillations decays relatively slowly compared to the pole
term, as eω0I t t−3/2 [see Eq. (8)], but exponentially faster than
the saddle term.

According to Eq. (9), T0 is not a linear function of x.
For example, in the limit k0I → 0 the motion of the first
maximum is described by x0 = 2T0 −

√
3T0π . Even though

an asymptotic velocity may be defined, 2(1+ k0I ) in the
general case (see the inset of Fig. 3), there is no oblique
asymptote for this function. Thus a naive linear extrapolation
back to the origin at some large distance fails to provide
the instant of the source onset. In other words, the times in
which the tangents to x0(t) cut x0 = 0 have no definite limit,
in spite of the well-defined asymptotic velocity. This is an
example of the importance of DIT to correct simple classical-
dynamical extrapolation from asymptotic wave features to
extract emission characteristics, as practiced, for example, in
the analysis of ionization by ultrashort laser pulses [20].

FIG. 3. (Color online) Time intervals Tn+1 − Tn between two
consecutive maxima: exact (circles), and approximation from Eq. (9)
(boxes). Same parameters as in Fig. 2. The symbol size is to help the
eye, and is not related to errors. (Inset) Nonlinear position of the first
maximum versus time for k0I = −0.08 (solid line) and onset of the
pole term xc = 2(1+ k0I )t (dotted line).

FIG. 4. (Color online) Saddle and pole terms for k0I = −0.03
(solid blue line) and k0I = −0.13 (long-dashed red line). x = 80. The
inset shows the corresponding exact densities. The shorter lifetime
suppresses DIT.

In our dimensionless description two factors affect the
visibility of the DIT pattern: the observation position x and
the lifetime. Figure 4 shows the moduli of the logarithm of
the pole and saddle densities for two different lifetimes. The
pole term is a semi-infinite straight line which begins when
the pole is crossed by the steepest descent path passing along
the saddle in the complex momentum plane, at tc; the saddle
term shows a maximum near |τ | and decays from there slowly.
Theremay be up to two intersections of the two terms, one near
the arrival of the main front, and one at a long time that marks
the transition to postexponential decay [18]. When the saddle
and pole terms are similar or close enough, the interference
oscillations appear. The interference region which interests us
here is the one following the main front because it relates
by continuity to ordinary MS-DIT in the limit k0I → 0; it is
also much more easily observable than the oscillations at large
times because of the magnitude of the amplitudes.

The oscillations are evidently not present at the source
x = 0, and will be small at small distances, x <∼ 1, because of
the rapid decay and separation from the pole term of the saddle
term in these conditions (see Fig. 5). The saddle term beyond
the main front arrival increases with x [18]. In the opposite
extreme of very large x, it eventually dominates entirely
and stays above the pole term at all times, suppressing DIT
and even exponential decay [18]. Between these two extreme
scenarios DIT is prominent in an ample range of x. The slope
of the pole term also plays a role. For larger values (smaller
lifetimes), pole and saddle contributions separate more rapidly
leading to fewer visible DIT oscillations which may actually
disappear for small enough lifetimes.

To estimate the domain where some oscillations are seen
before the decay is too strong we may solve T1,0 < Nτ0 for

FIG. 5. (Color online) Density |ψ̃(x,t)|2 for k0I = −0.003 show-
ing the transition from pure exponential decay to a DIT pattern.
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E. TORRONTEGUI, J. MUÑOZ, YUE BAN, AND J. G. MUGA PHYSICAL REVIEW A 83, 043608 (2011)

a small N , where τ0 = 1/4|k0I | is the lifetime. This gives an
explicit but lengthy expression. ForN = 5 and in the k0I → 0
limit, x <∼ 30τ 2

0 .
From the previous discussion it might seem that a very

long lifetime is always preferable to attain DIT. Nevertheless
long lifetimes also imply a weaker signal because of the
normalization. The consequence of opposite tendencies is
an optimal lifetime-position point. A good measure of the
visibility of DIT of experimental relevance is the difference )
between the second maximum and the previous minimum of
the normalized probability density (see Fig. 2). The optimal
parameters are found to be k0I = −0.03, x = 60.

V. MODEL INDEPENDENCE OF THE RESULTS

We have described the close connection between DIT
and resonance decay. DIT will be visible when contributions
from different resonances are well separated, which generally
requires narrow and/or strong confinement. DIT does not
depend on the specific properties of the model used so far.
We have checked the robustness of DIT from exponential
decay explicitlywith several additionalmodels.Winter’s decay
model [21] describes the decay of the ground state of the
square well between −L and 0 when the right infinite wall is
substituted by aUδ(x) potential. Thewave function outside the
trap tends to the source model wave function for large U [22].
Moreover, DIT does not depend dramatically on the strict
confinement of the initial wave function on a finite domain. To
show this we have calculated the decay of the ground state of
a well with a finite right wall when the right wall is substituted
by a delta barrier. The initial wave penetrates by tunneling
in the evanescent region of the right wall and this creates
a different fast forerunner at x, but the part associated with
the dominant, lowest energy resonance remains essentially
stable showing DIT as for the infinite wall (see Fig. 6).

FIG. 6. (Color online) Stability of DIT for decay from Uδ(x)
(Winter’s model). The initial states are the ground states of the two
wells of the inset. At t = 0 the right wall is substituted by the delta.
L = 3.14, x = 157.05, U = 161.35, V = 202.72.

Moreover, we have observed the same stability for finite-width
barriers. DIT also survives a smooth source onset [4], and again
may be observed after the passage of some onset-dependent
transients. As for the effect of collisions, in the mean-field
regime DIT is enhanced for attractive interactions [8].

Let us finally point out the possibility of observing DIT in
periodic structures [9] such as optical lattices, or other physical
systems that realize a tight-binding model, for example,
periodic waveguide arrays that provide a classical, electric
field analog of a quantum system with exponential decay [23].
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