62 research outputs found

    Analysis of turbulence in fog episodes

    Get PDF
    Many processes interact in a complex and highly non-linear way during the life cycle of fog, the turbulent transport being among them. Observations and analysis of turbulence are, then, fundamental to our understanding of the physical mechanisms involved with fog formation, evolution and dissipation. Data gathered by fast-response sonic anemometers are processed using wavelet methods in order to estimate turbulence parameters such as kinetic energy or fluxes during the successive stages of fog evolution

    Analysis of turbulent exchange and coherent structures in the stable atmospheric boundary layer based on tower observations

    Get PDF
    Using data collected at the Spanish low troposphere research centre CIBA (Centro de Investigación de la Baja Atmósfera) and at the Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands, we analysed the most significant features of different coherent structures occurring in the stable atmospheric boundary layer. In particular, we used both the Reynolds and wavelet methods to analyse a solitary wave, a gravity wave, a density current and a low-level jet. For each of these structures, we found that wavelet analysis had the capacity to distinguish the different scales involved in these events due to the different timing and heights of the thermal instabilities and downdrafts associated with the disturbances. In addition, the wavelet method highlights the different roles of turbulence and coherent structures in the transfer of heat, moisture and CO2 in the nocturnal boundary layer.This study was supported by the Spanish government through the project CGL 2009- 12797-C03-03

    Sistema de evaluación y aviso de tormentas de polvo y arena (WMO SDS-WAS)

    Get PDF
    Cuando el viento es moderado o fuerte, puede levantar grandes masas de polvo y arena procedentes de suelos secos y desnudos e incorporarlas a la circulación atmosférica. Las partículas de menor tamaño pueden viajar durante varios días hasta distancias de centenares o millares de kilómetros antes de ser depositadas nuevamente sobre el suelo. Para países situados en zonas áridas o a sotavento de las mismas, el polvo atmosférico supone una grave amenaza para el medio ambiente, la salud humana y la economía. Además, la interacción del polvo con procesos atmosféricos como la radiación o la microfísica de nubes hace imprescindible su incorporación tanto a los modelos climáticos como a los de predicción numérica del tiempo.Postprint (published version

    Electrocardiographic Changes in a Patient With Pulmonary Embolism and Septic Shock

    Get PDF
    Various electrocardiography (ECG) abnormalities have been reported in patients who present with pulmonary embolism (PE). Severe sepsis is also associated with ECG changes that may mimic ST elevation myocardial infarction. We report a case of an elderly patient with PE and septic shock associated with striking ECG changes

    Distribución espacial y temporal de polvo mineral atmosférico en el norte de África y Oriente medio estimada a partir de la visibilidad horizontal

    Get PDF
    El polvo mineral atmosférico desempeña un papel muy importante en la atmósfera por su interacción con el balance radiativo y con la microfísica de nubes. África Septentrional es la mayor fuente de polvo mineral en el mundo. Sin embargo, carece de sistemas de observación desde tierra adecuados y la información desde satélite es muy limitada debido a la alta reflectividad del suelo. Por ello, se valora la posibilidad de usar la visibilidad horizontal observada en las estaciones meteorológicas como una forma indirecta de estimar el contenido de polvo en la atmósfera al nivel de la superficie. En este trabajo se utilizan observaciones de visibilidad para analizar la distribución geográfica de polvo mineral en África Septentrional y Oriente Medio, así como su variabilidad estacional. Posteriormente, se estudia la relación entre visibilidad y la concentración de partículas y se halla una relación empírica entre ambas magnitudes que es comparada con otras relaciones similares deducidas por otros autores.Postprint (published version

    Contribution of S6K1/MAPK signaling pathways in the response to oxidative stress: activation of RSK and MSK by hydrogen peroxide

    Get PDF
    Trobareu correccions de l'article a: http://dx.doi.org/10.1371/annotation/0b485bd9-b1b2-4c60-ab22-3ac5d271dc59Cells respond to different kind of stress through the coordinated activation of signaling pathways such as MAPK or p53. To find which molecular mechanisms are involved, we need to understand their cell adaptation. The ribosomal protein, S6 kinase 1 (S6K1), is a common downstream target of signaling by hormonal or nutritional stress. Here, we investigated the initial contribution of S6K1/MAPK signaling pathways in the cell response to oxidative stress produced by hydrogen peroxide (H2O2). To analyze S6K1 activation, we used the commercial anti-phospho-Thr389-S6K1 antibody most frequently mentioned in the bibliography. We found that this antibody detected an 80-90 kDa protein that was rapidly phosphorylated in response to H2O2 in several human cells. Unexpectedly, this phosphorylation was insensitive to both mTOR and PI3K inhibitors, and knock-down experiments showed that this protein was not S6K1. RSK and MSK proteins were candidate targets of this phosphorylation. We demonstrated that H2O2 stimulated phosphorylation of RSK and MSK kinases at residues that are homologous to Thr389 in S6K1. This phosphorylation required the activity of either p38 or ERK MAP kinases. Kinase assays showed activation of RSK and MSK by H2O2. Experiments with mouse embryonic fibroblasts from p38 animals" knockout confirmed these observations. Altogether, these findings show that the S6K1 signaling pathway is not activated under these conditions, clarify previous observations probably misinterpreted by non-specific detection of proteins RSK and MSK by the anti-phospho-Thr389-S6K1 antibody, and demonstrate the specific activation of MAPK signaling pathways through ERK/p38/RSK/MSK by H2O2

    Numerical Prediction of Dust

    Get PDF
    Covers the whole breadth of mineral dust research, from a scientific perspective Presents interdisciplinary work including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies Explores the role of dust as a player and recorder of environmental change This volume presents state-of-the-art research about mineral dust, including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies. Dust research is a new, dynamic and fast-growing area of science and due to its multiple roles in the Earth system, dust has become a fascinating topic for many scientific disciplines. Aspects of dust research covered in this book reach from timescales of minutes (as with dust devils, cloud processes, and radiation) to millennia (as with loess formation and oceanic sediments), making dust both a player and recorder of environmental change. The book is structured in four main parts that explore characteristics of dust, the global dust cycle, impacts of dust on the Earth system, and dust as a climate indicator. The chapters in these parts provide a comprehensive, detailed overview of this highly interdisciplinary subject. The contributions presented here cover dust from source to sink and describe all the processes dust particles undergo while travelling through the atmosphere. Chapters explore how dust is lifted and transported, how it affects radiation, clouds, regional circulations, precipitation and chemical processes in the atmosphere, and how it deteriorates air quality. The book explores how dust is removed from the atmosphere by gravitational settling, turbulence or precipitation, how iron contained in dust fertilizes terrestrial and marine ecosystems, and about the role that dust plays in human health. We learn how dust is observed, simulated using computer models and forecast. The book also details the role of dust deposits for climate reconstructions. Scientific observations and results are presented, along with numerous illustrations. This work has an interdisciplinary appeal and will engage scholars in geology, geography, chemistry, meteorology and physics, amongst others with an interest in the Earth system and environmental change

    Operational Dust Prediction

    Get PDF
    Over the last few years, numerical prediction of dust aerosol concentration has become prominent at several research and operational weather centres due to growing interest from diverse stakeholders, such as solar energy plant managers, health professionals, aviation and military authorities and policymakers. Dust prediction in numerical weather prediction-type models faces a number of challenges owing to the complexity of the system. At the centre of the problem is the vast range of scales required to fully account for all of the physical processes related to dust. Another limiting factor is the paucity of suitable dust observations available for model, evaluation and assimilation. This chapter discusses in detail numerical prediction of dust with examples from systems that are currently providing dust forecasts in near real-time or are part of international efforts to establish daily provision of dust forecasts based on multi-model ensembles. The various models are introduced and described along with an overview on the importance of dust prediction activities and a historical perspective. Assimilation and evaluation aspects in dust prediction are also discussed

    A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals

    Get PDF
    Systematic measurements of dust concentration profiles at a continental scale were recently made possible by the development of synergistic retrieval algorithms using combined lidar and sun photometer data and the establishment of robust remote-sensing networks in the framework of Aerosols, Clouds, and Trace gases Research Infra-Structure Network (ACTRIS)/European Aerosol Research Lidar Network (EARLINET). We present a methodology for using these capabilities as a tool for examining the performance of dust transport models. The methodology includes considerations for the selection of a suitable data set and appropriate metrics for the exploration of the results. The approach is demonstrated for four regional dust transport models (BSC-DREAM8b v2, NMMB/BSC-DUST, DREAM-ABOL, DREAM8-NMME-MACC) using dust observations performed at 10 ACTRIS/EARLINET stations. The observations, which include coincident multi-wavelength lidar and sun photometer measurements, were processed with the Lidar-Radiometer Inversion Code (LIRIC) to retrieve aerosol concentration profiles. The methodology proposed here shows advantages when compared to traditional evaluation techniques that utilize separately the available measurements such as separating the contribution of dust from other aerosol types on the lidar profiles and avoiding model assumptions related to the conversion of concentration fields to aerosol extinction values. When compared to LIRIC retrievals, the simulated dust vertical structures were found to be in good agreement for all models with correlation values between 0.5 and 0.7 in the 1-6 km range, where most dust is typically observed. The absolute dust concentration was typically underestimated with mean bias values of -40 to -20 mu g m(-3) at 2 km, the altitude of maximum mean concentration. The reported differences among the models found in this comparison indicate the benefit of the systematic use of the proposed approach in future dust model evaluation studies
    corecore