51 research outputs found

    Comparison of multianalyte proficiency test results by sum of ranking differences, principal component analysis, and hierarchical cluster analysis

    Get PDF
    Sum of ranking differences (SRD) was applied for comparing multianalyte results obtained by several analytical methods used in one or in different laboratories, i.e., for ranking the overall performances of the methods (or laboratories) in simultaneous determination of the same set of analytes. The data sets for testing of the SRD applicability contained the results reported during one of the proficiency tests (PTs) organized by EU Reference Laboratory for Polycyclic Aromatic Hydrocarbons (EU-RL-PAH). In this way, the SRD was also tested as a discriminant method alternative to existing average performance scores used to compare mutlianalyte PT results. SRD should be used along with the z scores-the most commonly used PT performance statistics. SRD was further developed to handle the same rankings (ties) among laboratories. Two benchmark concentration series were selected as reference: (a) the assigned PAH concentrations (determined precisely beforehand by the EU-RL-PAH) and (b) the averages of all individual PAH concentrations determined by each laboratory. Ranking relative to the assigned values and also to the average (or median) values pointed to the laboratories with the most extreme results, as well as revealed groups of laboratories with similar overall performances. SRD reveals differences between methods or laboratories even if classical test(s) cannot. The ranking was validated using comparison of ranks by random numbers (a randomization test) and using seven folds cross-validation, which highlighted the similarities among the (methods used in) laboratories. Principal component analysis and hierarchical cluster analysis justified the findings based on SRD ranking/grouping. If the PAH-concentrations are row-scaled, (i.e., z scores are analyzed as input for ranking) SRD can still be used for checking the normality of errors. Moreover, cross-validation of SRD on z scores groups the laboratories similarly. The SRD technique is general in nature, i.e., it can be applied to any experimental problem in which multianalyte results obtained either by several analytical procedures, analysts, instruments, or laboratories need to be compared. [Figure not available: see fulltext.] © 2013 Springer-Verlag Berlin Heidelberg

    Survey of mycotoxins in Southern Brazilian wheat and evaluation of immunoassay methods

    Get PDF
    One hundred commercial wheat grain samples were collected during the 2015 sea-son across 78 municipalities in the states of Paraná (PR), Rio Grande do Sul (RS), and São Paulo (SP), Brazil. Separate subsamples were analyzed for the concentration of deoxynivalenol (DON), zearalenona (ZEA) and ochratoxin A (OTA) mycotoxins using two methods: UHPLC-MS/MS (reference method) and a commercial enzyme-linked immunosorbent assay (ELISA) (AgraQuant®). The OTA mycotoxin was not found in the samples by both methods. DON and ZEA were detected in 55 % and 39 % of the samples by the reference method, with overall mean levels of 795.2 μg kg−1 and 79.78 μg kg−1, respectively. There was a significant and positive correlation (Spearman rank) between DON and ZEA estimates by the reference method (r = 0.77, p < 0.001). The DON levels estimated by the immunoassay agreed poorly with the reference, being largely overestimated. Based on a cut-off level of 1000 μg kg−1, the immunoassay correctly classified 57 samples as true negatives and 15 as true positives. Only 28 were classified as false positives. For ZEA, the levels estimated by the two methods were in better agreement than for DON. Using the cut-off level of 200 μg kg−1, 96 % of the samples were classified correctly as true positives and only one sample was classified as false positive. The levels for both mycotoxins were mostly acceptable for human consumption. Further studies should focus on multi-toxin methods compared with immunoassays to understand the reasons of overestimation and the role of immunoassays as a cost-effective solution for fast screening of mycotoxins in the food chain
    corecore