

FEED

INCIDENCE OF CITRININ IN THE BELGIAN FEED CHAIN AND **TOXICOKINETIC PROFILE IN BROILER CHICKENS**

C. MEERPOEL^{1,2}, A. VIDAL², B. HUYBRECHTS³, E. TANGNI³, S. DE SAEGER², M. DEVREESE¹ AND S. CROUBELS¹

¹ Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium ² Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium ³ Chemical and Physical Health Risks, Organic Contaminants and Additives, Sciensano, Tervuren, Belgium * Corresponding author: Celine.Meerpoel@UGent.be

INTRODUCTION

- A scientific opinion on **CITRININ (CIT)** published by **EFSA**¹ emphasized that
- additional quantitative occurrence and toxicity data is needed;
- the impact of **uncertainties** on the risk assessment is large;

OBJECTIVES

- To collect occurrence data of CIT in feed in Belgium
- an LC-MS/MS method was developed for analysis of CIT in feed (pig and chicken);
- this validated method was applied on 90 Belgian feedstuffs.
- more data regarding the toxicity and the occurrence of CIT in food and feed are needed to enable refinement.
- In **Belgium**, a **risk assessment** will be performed in order to set legal limits for this toxin, by using collected occurrence and toxicity data of CIT.
- To collect **toxicokinetic data** of **CIT** and its metabolite dihydrocitrinone (**HO-CIT**) in broiler chickens
- an LC-MS/MS method was developed for analysis of CIT and HO-CIT in chicken plasma;
- a pilot toxicokinetic study was performed on 1 broiler chicken.

MATERIALS AND METHODS

The trial was approved by the Ethical Committee of the Faculties of Bioscience Engineering and Veterinary Medicine from Ghent University (case no. EC 2017/105).

RESULTS Method validation CIT/HO-CIT in feed and chicken plasma Preliminary results toxicokinetic profile CIT in chicken plasma

1000

Table 1: Method performance parameters of the developed LC-MS/MS method for analysis of CIT/HO-CIT in animal feed and chicken plasma.

	FEED	CHICKEN PLASMA		
	<u>CIT</u>	<u>CIT</u>	<u>HO-CIT</u>	
Range	1 – 250 µg/kg	0.1 – 100 ng/mL	0.1 – 100 ng/mL	
Apparent recovery	80-107%	80-107%	80-110%	
RSD _R	<5 %	<20 %	<20 %	
LOD	0.5 µg/kg	0.05 ng/mL	0.05 ng/mL	
LOQ	1 µg/kg	0.1 ng/mL	0.1 ng/mL	
				/

Occurrence CIT in FEED

Table 2: Occurrence of CIT in Belgian chicken and pig feed. Concentrations are shown with respect to their measurement uncertainty. *Of samples above LOQ (1 µg/kg)

Feed	Toxin	% Positive samples	Average concentration* (µg/kg)	Max concentration (µg/kg)
Chicken (n = 38)	CIT	45%	1.95 ± 0.46	3.9 ± 0.92
Pig (n = 52)	CIT	51%	1.58 ± 0.37	3.70 ± 0.87

CIT was detected in about half of the sampled feedstuffs (Table 2).

CIT frequently **occurs** in Belgian feed, although

Limited data is available concerning its

in low concentration levels

toxicity and toxicokinetics.

Hence, further **research** is needed.

Fig 2. Plasma concentration-time profile of CIT and HO-CIT after single intravenous administration of 0.25 mg CIT /kg body weight to broiler chicken ($n=1 \sigma$). The inserts are the chemical structures of (A) CIT and (B) HO-CIT.

Compared to Devreese et al¹. (2018), the preliminary elimination rate constant (K_{el}) of CIT in broiler chickens is in line with the K_{el} of **ochratoxin A** after IV administration of 0.25 mg/kg body weight (Table 3). More data from a toxicokinetic study with a sufficient number of animals (n = 8) should confirm this.

Table 3. Comparison of toxicokinetic parameters of CIT and OTA¹ after intravenous administration of 0,25 mg/kg body weight to broiler chickens (CIT: $n = 1 \sigma/0TA$: $n = 4 \varphi/4 \sigma$),

	Co	AUC _{0-72h}	K _{el}	T _{1/2el}	V _d	Cl
	(ng/L)	(h*ng/L)	(1/h)	(h)	(L/kg)	(L/h/kg)
ΟΤΑ	910.52 ± 627.31	335.57 ± 79.30	0.045 ± 0.021	23.95 ± 15.27	19.85 ± 11.74	0.61 ± 0.12
CIT	434.69	1920.80	0.04	17.68	3.32	0.13

CONCLUSIONS AND FURTHER RESEARCH

Toxicokinetic study: Toxicokinetic parameters?

Post-mortem evaluation: Organ damage?

Steady-state study: Carry-over to edible tissues? (Fig. 3)

MetID (HRMS): CIT phase I and phase II metabolites

Contact

n = 32

n = 16

up for carry-over study

Fig. 3: Presentation of experimental set-

celine.meerpoel@ugent.be www.vetftb.ugent.be

y @ugent

in Ghent University

The research was funded by the Belgian Federal Public Service of Health, Food Chain Safety and Environment through the contract RT 16/6308 CITRIRISK.

¹M. Devreese, S. Croubels, S. De Baere, R. Gehring, G. Antonissen, Comparative Toxicokinetics and Plasma Protein Binding of Ochratoxin A in Four Avian Species, J. Agric. Food Chem. 66 (2018) 2129–2135..

 \checkmark

