

CITRIRISK: INCIDENCE OF CITRININ IN THE BELGIAN FOOD AND FEED CHAIN & RISK FOR HUMAN AND ANIMAL HEALTH

<u>C. MEERPOEL^{1,2}, J. DIANA DI MAVUNGU¹, B. HUYBRECHTS³, E. TANGNI³, M. DEVREESE², S. CROUBELS² AND S. DE SAEGER¹</u>

¹ Ghent University, Department of Bioanalysis, Laboratory of Food Analysis, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
 ² Ghent University, Department of Pharmacology, Toxicology and Biochemistry, Salisburylaan 133, BE-9820 Merelbeke, Belgium
 ³ CODA-CERVA, Veterinary and Agrochemical Research Center, Leuvensesteenweg 17, BE-3080 Tervuren, Belgium
 * Corresponding author: Celine.Meerpoel@ugent.be

INTRODUCTION AND OBJECTIVES

- Citrinin (CIT) is a mycotoxin produced by several Aspergillus, Penicillium and Monascus species. In 2012, the European Food Safety Authority (EFSA) published a scientific opinion on CIT whereby the need for additional quantitative occurrence and toxicity data was emphasized, since the CONTAM Panel concluded that the impact of uncertainties on the risk assessment is large, and more data regarding the toxicity and the occurrence of citrinin in food and feed are needed to enable refinement. In Belgium, recent work showed that CIT (and/or its metabolite dehydrocitrinone) can be detected in up to 90% of human urine samples (BIOMYCO study)² which indicates that exposure to CIT might be more important than assumed so far.
- The aim of the CITRIRISK project is to gather information on the occurrence of CIT in feed and foodstuffs available on the Belgian market with the prospect of identifying all relevant sources of intake and their importance. Since CIT often co-occurs with ochratoxin A (OTA), it is interesting to investigate the presence of both mycotoxins. Furthermore, it is the intention to collect data on the toxicokinetics and absolute oral bioavailability of CIT in chickens and pigs, and carry-over to edible tissues. All results of the chemical analyses will be brought together in a databank in order to perform a risk assessment in Belgium (exposure assessment and risk characterization for both Belgian population and pig and poultry sector).

PROJECT OVERVIEW

UPLC-MS/MS methods

- Development of suitable UPLC-MS/MS methods to determine
- CIT/OTA in Feed Food Edible tissues of animal origin Plasma Urine
- Validation according to Commission Regulation No. 401/2006/EC and Commission Decision No. 2002/657/EC

PRELIMINARY RESULTS

M FACULTY OF

UPHARMACEUTICAL SCIENCES

Based on a previously developed QuEChERS-based method³, optimal MS/MS-parameters for simultaneous analysis of CIT and OTA were achieved (Table 1) using a Waters Acquity UPLC system coupled to a Xevo-TQS mass spectrometer.

Table 1: Mass	spectrometric pa	arameters for	the analysis of CIT	and OTA and	their internal	standards ¹³ C-C	IT and ¹³ C-OTA
Analyte	Retention time (min)	Precursor ion		Cone voltage (V)	Product ion m/z (collision energy)		
		m/z	lon species		Quantifier	1 st Qualifier	2 nd Qualifier
CIT	3.6	281.0	[M+MeOH-H]⁻	50	249.0 (15V)	205.0 (25V)	177.0 (30V)
¹³ C-CIT		294.0	[M+MeOH-H]⁻	50	262.0 (15V)		

ANALYSIS OF BELGIAN FOOD AND FEED

400 food samples:

cereal products – fruit and vegetable juices – herbs and spices
– nuts and seeds – alcoholic beverages – baby food – soy and
vegetarian products – food supplements – meat products

- 100 feed samples:
 - pig broiler chickens laying hens

KINETIC STUDIES

- Toxicokinetic study after 1 bolus (oral and IV) in 8 animals (pigs and broiler chickens) in a 2-way cross-over design
 - \rightarrow ADME parameters, plasma protein binding and absolute oral bioavailability?
- Steady-state study: 3 weeks administration of contaminated feed to pigs, broiler chickens and laying hens
 - \rightarrow Tissue residues in muscles, kidneys and eggs?

OTA 4.6	404.0	[M+H]+	35		221.0 (30V)	192.8 (40V)
¹³ C-OTA	424.2	[M+H] ⁺	35	249.8 (28V)		

Good chromatography of all analytes was achieved within 10 minutes using an Acquity UPLC HSS T3 column. Typical chromatograms of spiked and naturally contaminated feed samples are shown in Fig 1 and Fig 2. Table 2 summarizes the occurrence data of CIT and OTA for 19 feed samples.

- The method was successfully validated achieving:
- Extraction recovery of 90% and 95% for
 CIT and OTA respectively
- RSD_R ranging between 0.7% and 12.6%
 for CIT and between 1.5% and 12.2% for
 OTA

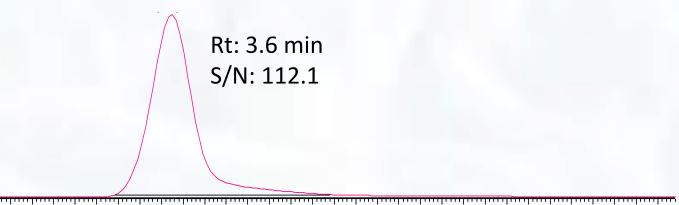


Fig 1: Chromatogram of a blank feed sample spiked with CIT (20 $\mu g/kg)$

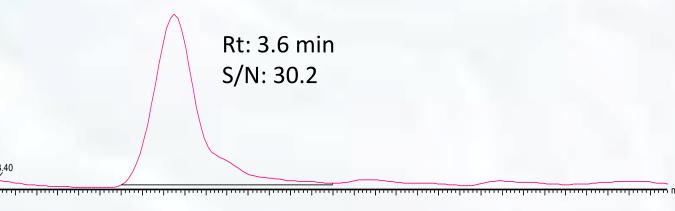


Fig 2: Chromatogram of a feed sample containing CIT (2.8 $\mu g/kg)$

Table 2: Occurrence data of CIT and OTA in Belgian feed							
Mycotoxin	% positive samples (n=19)	Contamination (µg/kg)		LOD (µg/kg)	LOQ (µg/kg)		
		Mean*	Max				
Citrinin	79%	1.0 ± 0.3	2.8	0.2	0.5		

- Post-mortem evaluation
 - \rightarrow Organ damage?
- MetID (HRMS): CIT phase I and phase II metabolites

REFERENCES

¹ EFSA CONTAM PANEL EFSA Journal 10(3):2605

- ² Heyndrickx *et al.* 2015 *Environment International No* 84, 82-89
- ³ Kiebooms *et al.* 2016 *World Mycotoxin Journal No 9, 343-352*

Ochratoxin A	68 %	0.7 ± 0.1	0.9	0.1	0.2
* Mean of samples al	oove LOQ				

CONCLUSION

- The quantitative LC-MS/MS method is applicable for determination of CIT and OTA in feed
- Validation was done for the target toxins and good values for extraction recovery and precision were obtained
- In a high percentage of the analysed samples, CIT and OTA were detected above the LOD, proving their co-occurrence in the Belgian feed chain

ACKNOWLEDGEMENTS

This research was financially supported by the Federal Public Service Health, Food Chain

Safety and Environment (Project RT 16/6308).