322 research outputs found

    The influence of barefoot and barefoot inspired footwear on the kinetics and kinematics of running in comparison to conventional running shoes.

    Get PDF
    Barefoot running has experienced a resurgence in footwear biomechanics literature, based on the supposition that it serves to reduce the occurrence of overuse injuries in comparison to conventional shoe models. This consensus has lead footwear manufacturers to develop shoes which aim to mimic the mechanics of barefoot locomotion. This study compared the impact kinetics and 3-D joint angular kinematics observed whilst running: barefoot, in conventional cushioned running shoes and in shoes designed to integrate the perceived benefits of barefoot locomotion. The aim of the current investigation was therefore to determine whether differences in impact kinetics exist between the footwear conditions and whether shoes which aim to simulate barefoot movement patterns can closely mimic the 3-D kinematics of barefoot running. Twelve participants ran at 4.0 m.s-1±5% in each footwear condition. Angular joint kinematics from the hip, knee and ankle in the sagittal, coronal and transverse planes were measured using an eight camera motion analysis system. In addition simultaneous tibial acceleration and ground reaction forces were obtained. Impact parameters and joint kinematics were subsequently compared using repeated measures ANOVAs. The kinematic analysis indicates that in comparison to the conventional and barefoot inspired shoes that running barefoot was associated significantly greater plantar-flexion at footstrike and range of motion to peak dorsiflexion. Furthermore, the kinetic analysis revealed that compared to the conventional footwear impact parameters were significantly greater in the barefoot condition. Therefore this study suggests that barefoot running is associated with impact kinetics linked to an increased risk of overuse injury, when compared to conventional shod running. Furthermore, the mechanics of the shoes which aim to simulate barefoot movement patterns do not appear to closely mimic the kinematics of barefoot locomotion

    Assessment of possible impact of a health promotion program in Korea from health risk trends in a longitudinally observed cohort

    Get PDF
    BACKGROUND: Longitudinally observed cohort data can be utilized to assess the potential for health promotion and healthcare planning by comparing the estimated risk factor trends of non-intervened with that of intervened. The paper seeks (1) to estimate a natural transition (patterns of movement between states) of health risk state from a Korean cohort data using a Markov model, (2) to derive an effective and necessary health promotion strategy for the population, and (3) to project a possible impact of an intervention program on health status. METHODS: The observed transition of health risk states in a Korean employee cohort was utilized to estimate the natural flow of aggregated health risk states from eight health risk measures using Markov chain models. In addition, a reinforced transition was simulated, given that a health promotion program was implemented for the cohort, to project a possible impact on improvement of health status. An intervened risk transition was obtained based on age, gender, and baseline risk state, adjusted to match with the Korean cohort, from a simulated random sample of a US employee population, where a health intervention was in place. RESULTS: The estimated natural flow (non-intervened), following Markov chain order 2, showed a decrease in low risk state by 3.1 percentage points in the Korean population while the simulated reinforced transition (intervened) projected an increase in low risk state by 7.5 percentage points. Estimated transitions of risk states demonstrated the necessity of not only the risk reduction but also low risk maintenance. CONCLUSIONS: The frame work of Markov chain efficiently estimated the trend, and captured the tendency in the natural flow. Given only a minimally intense health promotion program, potential risk reduction and low risk maintenance was projected

    The influence of transition metal solutes on dislocation core structure and values of Peierls stress and barrier in tungsten

    Full text link
    Several transition metals were examined to evaluate their potential for improving the ductility of tungsten. The dislocation core structure and Peierls stress and barrier of 1/21/2 screw dislocations in binary tungsten-transition metal alloys (W1−x_{1-x}TMx_{x}) were investigated using first principles electronic structure calculations. The periodic quadrupole approach was applied to model the structure of 1/21/2 dislocation. Alloying with transition metals was modeled using the virtual crystal approximation and the applicability of this approach was assessed by calculating the equilibrium lattice parameter and elastic constants of the tungsten alloys. Reasonable agreement was obtained with experimental data and with results obtained from the conventional supercell approach. Increasing the concentration of a transition metal from the VIIIA group, i.e. the elements in columns headed by Fe, Co and Ni, leads to reduction of the C′C^\prime elastic constant and increase of elastic anisotropy A=C44/C′C_{44}/C^\prime. Alloying W with a group VIIIA transition metal changes the structure of the dislocation core from symmetric to asymmetric, similar to results obtained for W1−x_{1-x}Rex_{x} alloys in the earlier work of Romaner {\it et al} (Phys. Rev. Lett. 104, 195503 (2010))\comments{\cite{WRECORE}}. In addition to a change in the core symmetry, the values of the Peierls stress and barrier are reduced. The latter effect could lead to increased ductility in a tungsten-based alloy\comments{\cite{WRECORE}}. Our results demonstrate that alloying with any of the transition metals from the VIIIA group should have similar effect as alloying with Re.Comment: 12 pages, 8 figures, 3 table

    Urban Movement and Alcohol Intake Strongly Predict Defaulting from Tuberculosis Treatment: An Operational Study

    Get PDF
    BACKGROUND: High levels of defaulting from treatment challenge tuberculosis control in many African cities. We assessed defaulting from tuberculosis treatment in an African urban setting. METHODS: An observational study among adult patients with smear-positive pulmonary tuberculosis receiving treatment at urban primary care clinics in Kampala, Uganda. Defaulting was defined as having missed two consecutive monthly clinic visits while not being reported to have died or continued treatment elsewhere. Defaulting patients were actively followed-up and interviewed. We assessed proportions of patients abandoning treatment with and without the information obtained through active follow-up and we examined associated factors through multivariable logistic regression. RESULTS: Between April 2007 and April 2008, 270 adults aged ≥15 years were included; 54 patients (20%) were recorded as treatment defaulters. On active follow-up vital status was established of 28/54 (52%) patients. Of these, 19 (68%) had completely stopped treatment, one (4%) had died and eight (29%) had continued treatment elsewhere. Extrapolating this to all defaulters meant that 14% rather than 20% of all patients had truly abandoned treatment. Daily consumption of alcohol, recorded at the start of treatment, predicted defaulting (adjusted odds ratio [OR(adj)] 4.4, 95%CI 1.8-13.5), as did change of residence during treatment (OR(adj) 8.7, 95%CI 1.8-41.5); 32% of patients abandoning treatment had changed residence. CONCLUSIONS: A high proportion of tuberculosis patients in primary care clinics in Kampala abandon treatment. Assessing change of residence during scheduled clinic appointments may serve as an early warning signal that the patient may default and needs adherence counseling

    Malignant Catarrhal Fever Induced by Alcelaphine herpesvirus 1 Is Associated with Proliferation of CD8+ T Cells Supporting a Latent Infection

    Get PDF
    Alcelaphine herpesvirus 1 (AlHV-1), carried by wildebeest asymptomatically, causes malignant catarrhal fever (WD-MCF) when cross-species transmitted to a variety of susceptible species of the Artiodactyla order. Experimentally, WD-MCF can be induced in rabbits. The lesions observed are very similar to those described in natural host species. Here, we used the rabbit model and in vivo 5-Bromo-2′-Deoxyuridine (BrdU) incorporation to study WD-MCF pathogenesis. The results obtained can be summarized as follows. (i) AlHV-1 infection induces CD8+ T cell proliferation detectable as early as 15 days post-inoculation. (ii) While the viral load in peripheral blood mononuclear cells remains below the detection level during most of the incubation period, it increases drastically few days before death. At that time, at least 10% of CD8+ cells carry the viral genome; while CD11b+, IgM+ and CD4+ cells do not. (iii) RT-PCR analyses of mononuclear cells isolated from the spleen and the popliteal lymph node of infected rabbits revealed no expression of ORF25 and ORF9, low or no expression of ORF50, and high or no expression of ORF73. Based on these data, we propose a new model for the pathogenesis of WD-MCF. This model relies on proliferation of infected CD8+ cells supporting a predominantly latent infection

    Self-Association of Organic Solutes in Solution: A NEXAFS Study of Aqueous Imidazole

    Get PDF
    N K-edge near-edge X-ray absorption fine-structure (NEXAFS) spectra of imidazole in concentrated aqueous solutions have been acquired. The NEXAFS spectra of the solution species differ significantly from those of imidazole monomers in the gas phase and in the solid state of imidazole, demonstrating the strong sensitivity of NEXAFS to the local chemical and structural environment. In a concentration range from 0.5 to 8.2 mol L−1 the NEXAFS spectrum of aqueous imidazole does not change strongly, confirming previous suggestions that imidazole self-associates are already present at concentrations more dilute than the range investigated here. We show that various types of electronic structure calculations (Gaussian, StoBe, CASTEP) provide a consistent and complete interpretation of all features in the gas phase and solid state spectra based on ground state electronic structure. This suggests that such computational modelling of experimental NEXAFS will permit an incisive analysis of the molecular interactions of organic solutes in solutions. It is confirmed that microhydrated clusters with a single imidazole molecule are poor models of imidazole in aqueous solution. Our analysis indicates that models including both a hydrogen-bonded network of hydrate molecules, and imidazole–imidazole interactions, are necessary to explain the electronic structure evident in the NEXAFS spectra

    Photochemistry Of Monochloro Complexes Of Copper(ii) In Methanol Probed By Ultrafast Transient Absorption Spectroscopy

    Get PDF
    Ultrafast transient absorption spectra in the deep to near UV range (212-384 nm) were measured for the [Cu-II(MeOH)(5)Cl](+) complexes in methanol following 255-nm excitation of the complex into the ligand-to-metal charge-transfer excited state. The electronically excited complex undergoes sub-200 fs radiationless decay, predominantly via back electron transfer, to the hot electronic ground state followed by fast vibrational relaxation on a 0.4-4 Ps time scale. A minor photochemical channel is Cu-Cl bond dissociation, leading to the reduction of copper(H) to copper(I) and the formation of MeOH center dot Cl charge-transfer complexes. The depletion of ground-state [Cu-II(MeOH)(5)Cl](+) perturbs the equilibrium between several forms of copper(II) complexes present in solution. Complete re-equilibration between [Cu-II(MeOH)(5)Cl](+) and [Cu-II(MeOH)(4)Cl-2] is established on a 10-500 ps time scale, slower than methanol diffusion, suggesting that the involved ligand exchange mechanism is dissociative

    Body composition in older acute stroke patients after treatment with individualized, nutritional supplementation while in hospital

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Individualized, nutritional support reduced undernutrition among older stroke patients and improved quality of life in our recent randomized, controlled trial. Weight control thus seems to be important after stroke, and methods for monitoring nutritional status need to be simple and non-invasive. Here we aimed to assess if the nutritional intervention altered body composition in men and women in this study cohort, and also to examine the correlation between the methods for assessing body-, fat- and fat-free mass.</p> <p>Methods</p> <p>Acute stroke patients > 65 years at nutritional risk were randomized to either individualized, nutritional treatment with energy- and protein rich supplementation (intervention, n = 58) or routine, nutritional care (control, n = 66) while in hospital. Body composition was assessed with anthropometry and bioelectrical impedance. The follow-up period was three months.</p> <p>Results</p> <p>During the first week while in hospital, weight loss was smaller in the intervention group compared with the controls (P = 0.013). After three months weight- and fat loss were significant in both men and women. Whereas no significant differences were found in changes in body composition between the male study groups, in the women both weight loss (P = 0.022) and fat loss (P = 0.005) was smaller in the intervention group compared with the controls. A high correlation (r = 0.87) between mid upper arm circumference (MUAC) and body mass index (BMI) was found.</p> <p>Conclusions</p> <p>Individualized nutritional support to older stroke patients in hospital was beneficial for maintaining an adequate body mass and body composition the first week and seemed to have a preventive effect on fat loss among women, but not among men after three months. Measurement of MUAC may be used in the assessment of nutritional status when BMI cannot be obtained.</p> <p>Trial registration</p> <p>This trial is registered with ClinicalTrials.gov, number NCT00163007.</p
    • …
    corecore