1,722 research outputs found

    Impact of a 6-wk olive oil supplementation in healthy adults on urinary proteomic biomarkers of coronary artery disease, chronic kidney disease, and diabetes (types 1 and 2): a randomized, parallel, controlled, double-blind study

    Get PDF
    Background: Olive oil (OO) consumption is associated with cardiovascular disease prevention because of both its oleic acid and phenolic contents. The capacity of OO phenolics to protect against low-density lipoprotein (LDL) oxidation is the basis for a health claim by the European Food Safety Authority. Proteomic biomarkers enable an early, presymptomatic diagnosis of disease, which makes them important and effective, but understudied, tools for primary prevention. Objective: We evaluated the impact of supplementation with OO, either low or high in phenolics, on urinary proteomic biomarkers of coronary artery disease (CAD), chronic kidney disease (CKD), and diabetes. Design: Self-reported healthy participants (n = 69) were randomly allocated (stratified block random assignment) according to age and body mass index to supplementation with a daily 20-mL dose of OO either low or high in phenolics (18 compared with 286 mg caffeic acid equivalents per kg, respectively) for 6 wk. Urinary proteomic biomarkers were measured at baseline and 3 and 6 wk alongside blood lipids, the antioxidant capacity, and glycation markers. Results: The consumption of both OOs improved the proteomic CAD score at endpoint compared with baseline (mean improvement: –0.3 for low-phenolic OO and −0.2 for high-phenolic OO; P < 0.01) but not CKD or diabetes proteomic biomarkers. However, there was no difference between groups for changes in proteomic biomarkers or any secondary outcomes including plasma triacylglycerols, oxidized LDL, and LDL cholesterol. Conclusion: In comparison with low-phenolic OO, supplementation for 6 wk with high-phenolic OO does not lead to an improvement in cardiovascular health markers in a healthy cohort. This trial was registered at www.controlled-trials.com as ISRCTN93136746

    Insulin resistance: the linchpin between prediabetes and cardiovascular disease

    Get PDF
    The aim of this study was to test the hypothesis that cardiovascular disease occurs to the greatest extent in persons with prediabetes mellitus who are also insulin resistant. In 2003, 664 non-diabetic women (n = 457) and men (n = 207), aged 52 ± 16 and 53 ± 15 years, were surveyed during a programme for cardiovascular disease prevention. Fasting plasma glucose concentrations defined participants as having normal fasting plasma glucose (fasting plasma glucose <5.6 mmol/L) or prediabetes mellitus (fasting plasma glucose ⩾ 5.6 and <7.0 mmol/L). The tertile of prediabetes mellitus subjects with the highest fasting plasma insulin concentration was classified as insulin resistant. Baseline cardiovascular disease risk factors were accentuated in prediabetes mellitus versus normal fasting glucose, particularly in prediabetes mellitus/insulin resistant. In 2012, 86% of the sample were surveyed again, and the crude incidence for cardiovascular disease was higher in subjects with prediabetes mellitus versus normal fasting glucose (13.7 vs 6.0/100 persons/10 years; age- and sex-adjusted hazard ratio = 1.88, p = 0.052). In prediabetes mellitus, the crude incidences were 22.9 versus 9.6/100 persons/10 years in insulin resistant versus non-insulin resistant persons (age- and sex-adjusted hazard ratio = 2.36, p = 0.040). In conclusion, cardiovascular disease risk was accentuated in prediabetes mellitus/insulin resistant individuals, with a relative risk approximately twice as high compared to prediabetes mellitus/non-insulin resistant subjects.Facultad de Ciencias Médica

    Effects of a Protein Preload on Gastric Emptying, Glycemia, and Gut Hormones After a Carbohydrate Meal in Diet-Controlled Type 2 Diabetes

    Get PDF
    OBJECTIVE: We evaluated whether a whey preload could slow gastric emptying, stimulate incretin hormones, and attenuate postprandial glycemia in type 2 diabetes. RESEARCH DESIGN AND METHODS: Eight type 2 diabetic patients ingested 350 ml beef soup 30 min before a potato meal; 55 g whey was added to either the soup (whey preload) or potato (whey in meal) or no whey was given. RESULTS: Gastric emptying was slowest after the whey preload (P < 0.0005). The incremental area under the blood glucose curve was less after the whey preload and whey in meal than after no whey (P < 0.005). Plasma glucose-dependent insulinotropic polypeptide, insulin, and cholecystokinin concentrations were higher on both whey days than after no whey, whereas glucagon-like peptide 1 was greatest after the whey preload (P < 0.05). CONCLUSIONS: Whey protein consumed before a carbohydrate meal can stimulate insulin and incretin hormone secretion and slow gastric emptying, leading to marked reduction in postprandial glycemia in type 2 diabetes.Jing Ma, Julie E. Stevens, Kimberly Cukier, Anne F. Maddox, Judith M. Wishart, Karen L. Jones, Peter M. Clifton, Michael Horowitz, and Christopher K. Rayne

    Role of the IRS-1 and/or -2 in the pathogenesis of insulin resistance in Dahl salt-sensitive (S) rats

    Get PDF
    Insulin resistance is a common finding in hypertensive humans and animal models. The Dahl salt-sensitive (S) rat is an ideal model of genetically predetermined insulin resistance and salt-sensitive hypertension. Along the insulin signaling pathway, the insulin receptor substrates 1 and 2 (IRS-1 and -2) are important mediators of insulin signaling. IRS-1 and/or IRS-2 genetic variant(s) and/or enhanced serine phosphorylation correlate with insulin resistance. The present commentary was designed to highlight the significance of IRS-1 and/or -2 in the pathogenesis of insulin resistance. An emphasis will be given to the putative role of IRS-1 and/or -2 genetic variant(s) and serine phosphorylation in precipitating insulin resistance
    corecore