80 research outputs found
Feeling Torn When Everything Seems Right: Semantic Incongruence Causes Felt Ambivalence
The co-occurrence of positive and negative attributes of an attitude object typically accounts for less than a quarter of the variance in felt ambivalence toward these objects, rendering this evaluative incongruence insufficient for explaining felt ambivalence. The present research tested whether another type of incongruence, semantic incongruence, also causes felt ambivalence. Semantic incongruence arises from inconsistencies in the descriptive content of attitude objectsâ attributes (e.g., attributes that are not mutually supportive), independent of these attributesâ valences. Experiment 1 manipulated evaluative and semantic incongruence using valence norms and semantic norms. Both of these norm-based manipulations independently predicted felt ambivalence, and, in Experiment 2, they even did so over and above self-based incongruence (i.e., participantsâ idiosyncratic perceptions of evaluative and semantic incongruence). Experiments 3a and 3b revealed that aversive dissonant feelings play a role in the effects of evaluative incongruence, but not semantic incongruence, on felt ambivalence
Magnetoplasmonic design rules for active magneto-optics
Light polarization rotators and non-reciprocal optical isolators are
essential building blocks in photonics technology. These macroscopic passive
devices are commonly based on magneto-optical Faraday and Kerr polarization
rotation. Magnetoplasmonics - the combination of magnetism and plasmonics - is
a promising route to bring these devices to the nanoscale. We introduce design
rules for highly tunable active magnetoplasmonic elements in which we can
tailor the amplitude and sign of the Kerr response over a broad spectral range
A bimetallic nanoantenna for directional colour routing
Recent progress in nanophotonics includes demonstrations of meta-materials displaying negative refraction at optical frequencies, directional single photon sources, plasmonic analogies of electromagnetically induced transparency and spectacular Fano resonances. The physics behind these intriguing effects is to a large extent governed by the same single parameterâoptical phase. Here we describe a nanophotonic structure built from pairs of closely spaced gold and silver disks that show phase accumulation through material-dependent plasmon resonances. The bimetallic dimers show exotic optical properties, in particular scattering of red and blue light in opposite directions, in spite of being as compact as âŒÎ»3/100. These spectral and spatial photon-sorting nanodevices can be fabricated on a wafer scale and offer a versatile platform for manipulating optical response through polarization, choice of materials and geometrical parameters, thereby opening possibilities for a wide range of practical applications
Highly conductive coatings of carbon black/silica composites obtained by a sol-gel process
Conductive submicronic coatings of carbon black (CB)/silica composites have been prepared by a sol-gel process and deposited by spray-coating on glazed porcelain tiles. Stable CB dispersions with surfactant were rheologically characterized to determine the optimum CB-surfactant ratio. The composites were analyzed by Differential Thermal and Thermogravimetric Analysis and Hg-Porosimetry. Thin coatings were thermally treated in the temperature range of 300-500degC in air atmosphere. The microstructure of the coatings was determined by scanning electron microscopy and the structure evaluated by confocal Raman spectroscopy. The electrical characterization of the samples was carried out using dc intensity-voltage curves. The coatings exhibit good adhesion, high density and homogeneous distribution of the conductive filler (CB) in the insulate matrix (silica) that protects against the thermal degradation of the CB nanoparticles during the sintering process. As consequence, the composite coatings show the lowest resistivity values for CB-based films reported in the literature, with values of ~7times10 -5Omegam
Quinine doped hybrid sol-gel coatings for wave guiding and optical applications
Pure and quinine doped silica coatings have been prepared over sodalime glasses. The coatings were consolidated at low temperature (range 60-180 A degrees C) preserving optical activity of quinine molecule. We designed a device to test the guiding properties of the coatings. We confirmed with this device that light injected in pure silica coatings is guided over distances of meters while quinine presence induces isotropic photoluminescence. With the combined use of both type of coatings, it is possible to design light guiding devices and illuminate regions in glass elements without electronic circuits
Magnetic hot spots in closely spaced thick gold nanorings
This document is the Accepted Manuscript version of a Published Work that appeared in final form in
Nano Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/page/policy/articlesonrequest/index.htmlLigh-matter interaction at optical frequencies is mostly mediated by the electric component of the
electromagnetic field, with the magnetic component usually being considered negligible. Recently, it has been shown that properly engineered metallic nanostructures can provide a magnetic response at optical frequencies originated from real or virtual flows of electric current in the structure. In this work,
we demonstrate a magnetic plasmonic mode which emerges in closely spaced thick gold nanorings. The plasmonic resonance obtains a magnetic dipole character by sufficiently increasing the height of the nanorings. Numerical simulations show that a virtual current loop appears at resonance for sufficiently thick nanorings, resulting in a strong concentration of the magnetic field in the gap region (magnetic hot spot). We find that there is an optimum thickness that provides the maximum magnetic intensity
enhancement (over 200-fold enhancement) and give an explanation of this observation. This strong magnetic resonance, observed both experimentally and theoretically, can be used to build new metamaterials and resonant loop nanoantennas at optical frequencies.This work has been supported by Spanish Government and European Union (EU) funds under contracts CSD2008-00066 and TEC2011-28664-C02-02 and Universitat Politecnica de Valencia (program INNOVA 2011). The authors extend special thanks to Mr. J. Ross Aitken for his contribution to this work.Lorente Crespo, M.; Wang, L.; Ortuño Molinero, R.; GarcĂa Meca, C.; Ekinci, Y.; MartĂnez Abietar, AJ. (2013). Magnetic hot spots in closely spaced thick gold nanorings. Nano Letters. 13(6):2654-2661. https://doi.org/10.1021/nl400798sS2654266113
Designer Magnetoplasmonics with Nickel Nanoferromagnets
We introduce a new perspective on magnetoplasmonics in nickel nanoferromagnets by exploiting the phase tunability of the optical polarizability due to localized surface plasmons and simultaneous magneto-optical activity. We demonstrate how the concerted action of nanoplasmonics and magnetization can manipulate the sign of rotation of the reflected lightâs polarization (i.e., to produce Kerr rotation reversal) in ferromagnetic nanomaterials and, further, how this effect can be dynamically controlled and employed to devise conceptually new schemes for biochemosensing. © 2011 American Chemical Society.A.D. and Z.P. acknowledge support from the Swedish Research Council and Swedish Foundation for Strategic Research (Framework program Functional Electromagnetic Metamaterials,
project RMA08). J.Ă
. acknowledges support from the Swedish Research Council, the Swedish Foundation for Strategic Research (Future Research Leader Programme), and the GâŹoran Gustafsson Foundation. J.Ă
. is a Royal Swedish Academy of Sciences Research Fellow supported by a grant from the Knut and Alice Wallenberg Foundation. V.B. acknowledges the GâŹoran Gustafsson Foundation and the Blanceflor Boncompagni-Ludovisi Foundation. P.V. acknowledges funding from the Basque Government
through the ETORGAI Program, Project No. ER-
2010/00032 and Program No. PI2009-17, the Spanish Ministry of Science and Education under Projects No. CSD2006-53 and No. MAT2009-07980. J.N. acknowledges funding for the Generalitat de Catalunya and the Spanish Ministry of Science and
Education through No. 2009-SGR-1292 and No. MAT2010-20616-C02 projects.Peer Reviewe
Absorption Enhancement in Lossy Transition Metal Elements of Plasmonic Nanosandwiches
Combination of catalytically active transition metals and surface plasmons offers a promising way to drive chemical reactions by converting incident visible light into energetic electron-hole pairs acting as a mediator. In such a reaction enhancement scheme, the conversion efficiency is dependent on light absorption in the metal. Hence, increasing absorption in the plasmonic structure is expected to increase generation of electron-hole pairs and, consequently, the reaction rate. Furthermore, the abundance of energetic electrons might facilitate new reaction pathways. In this work we discuss optical properties of homo- and heterometallic plasmonic nanosandwiches consisting of two parallel disks made of gold and palladium. We show how near-field coupling between the sandwich elements can be used to enhance absorption in one of them. The limits of this enhancement are investigated using finite-difference time-domain simulations. Physical insight is gained through a simple coupled dipole analysis of the nanostructure. For small palladium disks (compared to the gold disk), total absorption enhancement integrated over the near visible solar AM 1.5 spectrum is 8-fold, while for large palladium disks, similar in size to the gold one, it exceeds three
Polyimide hollow fiber membranes for CO2 separation from wet gas mixtures
MatrimidÂź5218 hollow fiber membranes were prepared using the dry-wet spinning process. The transport properties were measured with pure gases (H2, CO2, N2, CH4 and O2) and with a mixture (30% CO2 and 70% N2) in dry and wet conditions at 25 ÂșC, 50 ÂșC, 60 ÂșC and 75 ÂșC and up to 600 kPa. Interesting values of single gas selectivity up to 60 ÂșC (between 31 and 28 for CO2/N2 and between 33 and 30 for CO2/CH4) in dry condition were obtained. The separation factor measured for the mixture was 20% lower compared to the single gas selectivity, in the whole temperature range analyzed. In saturation conditions the data showed that water influences the performance of the membranes, inducing a reduction of the permeance of all gases. Moreover, the presence of water caused a decrease of single gas selectivity and separation factor, although not so significant, highlighting the very high water resistance of hollow fiber membrane modules
- âŠ