86 research outputs found

    Vulcamera: a program for measuring volcanic SO2 using UV cameras

    Get PDF
    We report here on Vulcamera, a stand-alone program for the determination of volcanic SO2 fluxes using ultraviolet cameras. The code enables field image acquisition and all the required post-processing operations

    Recent advances in ground-based ultraviolet remote sensing of volcanic SO2 fluxes

    Get PDF
    Measurements of volcanic SO2 emission rates have been the mainstay of remote-sensing volcanic gas geochemistry for almost four decades, and they have contributed significantly to our understanding of volcanic systems and their impact upon the atmosphere. The last ten years have brought stepchange improvements in the instrumentation applied to these observations, which began with the application of miniature ultraviolet spectrometers that were deployed in scanning and traverse configurations, with differential optical absorption spectroscopy evaluation routines. This study catalogs the more recent empirical developments, including: ultraviolet cameras; wideangle field-of-view differential optical absorption spectroscopy systems; advances in scanning operations, including tomography; and improved understanding of errors, in particular concerning radiative transfer. Furthermore, the outcomes of field deployments of sensors during the last decade are documented, with respect to improving our understanding of volcanic dynamics and degassing into the atmosphere

    A Predictive Algorithm For Wetlands In Deep Time Paleoclimate Models

    Get PDF
    Methane is a powerful greenhouse gas produced in wetland environments via microbial action in anaerobic conditions. If the location and extent of wetlands are unknown, such as for the Earth many millions of years in the past, a model of wetland fraction is required in order to calculate methane emissions and thus help reduce uncertainty in the understanding of past warm greenhouse climates. Here we present an algorithm for predicting inundated wetland fraction for use in calculating wetland methane emission fluxes in deep time paleoclimate simulations. The algorithm determines, for each grid cell in a given paleoclimate simulation, the wetland fraction predicted by a nearest neighbours search of modern day data in a space described by a set of environmental, climate and vegetation variables. To explore this approach, we first test it for a modern day climate with variables obtained from observations and then for an Eocene climate with variables derived from a fully coupled global climate model (HadCM3BL-M2.2). Two independent dynamic vegetation models were used to provide two sets of equivalent vegetation variables which yielded two different wetland predictions. As a first test the method, using both vegetation models, satisfactorily reproduces modern data wetland fraction at a course grid resolution, similar to those used in paleoclimate simulations. We then applied the method to an early Eocene climate, testing its outputs against the locations of Eocene coal deposits. We predict global mean monthly wetland fraction area for the early Eocene of 8 to 10 × 106km2 with corresponding total annual methane flux of 656 to 909 Tg, depending on which of two different dynamic global vegetation models are used to model wetland fraction and methane emission rates. Both values are significantly higher than estimates for the modern-day of 4 × 106km2 and around 190Tg (Poulter et. al. 2017, Melton et. al., 2013

    UV camera measurements of fumarole field degassing (La Fossa crater, Vulcano Island)

    Get PDF
    The UV camera is becoming an important new tool in the armory of volcano geochemists to derive high time resolution SO2 flux measurements. Furthermore, the high camera spatial resolution is particularly useful for exploring multiple-source SO2 gas emissions, for instance the composite fumarolic systems topping most quiescent volcanoes. Here, we report on the first SO2 flux measurements from individual fumaroles of the fumarolic field of La Fossa crater (Vulcano Island, Aeolian Island), which we performed using a UV camera in two field campaigns: in November 12, 2009 and February 4, 2010. We derived ~ 0.5 Hz SO2 flux time-series finding fluxes from individual fumaroles, ranging from 2 to 8.7 t d−1, with a total emission from the entire system of ~ 20 t d−1 and ~ 13 t d−1, in November 2009 and February 2010 respectively. These data were augmented with molar H2S/SO2, CO2/SO2 and H2O/SO2 ratios, measured using a portable MultiGAS analyzer, for the individual fumaroles. Using the SO2 flux data in tandem with the molar ratios, we calculated the flux of volcanic species from individual fumaroles, and the crater as a whole: CO2 (684 t d−1 and 293 t d−1), H2S (8 t d−1 and 7.5 t d−1) and H2O (580 t d−1 and 225 t d−1).Published47-52JCR Journalrestricte

    Periodic volcanic degassing behavior: The Mount Etna example

    Get PDF
    In contrast to the seismic and infrasonic energy released from quiescent and erupting volcanoes, which have long been known to manifest episodes of highly periodic behavior, the spectral properties of volcanic gas flux time series remain poorly constrained, due to a previous lack of hightemporal resolution gas-sensing techniques. Here we report on SO2 flux measurements, performed on Mount Etna with a novel UV imaging technique of unprecedented sampling frequency (0.5 Hz), which reveal, for the first time, a rapid periodic structure in degassing from this target. These gas flux modulations have considerable temporal variability in their characteristics and involve two period bands: 40–250 and 500–1200 s. A notable correlation between gas flux fluctuations in the latter band and contemporaneous seismic root-mean-square values suggests that this degassing behavior may be generated by periodic bursting of rising gas bubble trains at the magma-air interface.Published4818–48221.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveJCR Journalrestricte

    Transforming U.S. agriculture with crushed rock for CO2_2 sequestration and increased production

    Full text link
    Enhanced weathering (EW) is a promising modification to current agricultural practices that uses crushed silicate rocks to drive carbon dioxide removal (CDR). If widely adopted on farmlands, it could help achieve net-zero or negative emissions by 2050. We report detailed state-level analysis indicating EW deployed on agricultural land could sequester 0.23-0.38 Gt CO2_2 yr1^{-1} and meet 36-60 % of U.S. technological CDR goals. Average CDR costs vary between state, being highest in the first decades before declining to a range of $\sim\$100-150 tCO21_2{}^{-1} by 2050, including for three states (Iowa, Illinois, and Indiana) that contribute most to total national CDR. We identify multiple electoral swing states as being essential for scaling EW that are also key beneficiaries of the practice, indicating the need for strong bipartisan support of this technology. Assessment the geochemical capacity of rivers and oceans to carry dissolved EW products from soil drainage suggests EW provides secure long-term CO2_2 removal on intergenerational time scales. We additionally forecast mitigation of ground-level ozone increases expected with future climate change, as an indirect benefit of EW, and consequent avoidance of yield reductions. Our assessment supports EW as a practical innovation for leveraging agriculture to enable positive action on climate change with adherence to federal environmental justice priorities. However, implementing a stage-gating framework as upscaling proceeds to safeguard against environmental and biodiversity concerns will be essential

    Sensitivity of the Cherenkov Telescope Array to TeV photon emission from the Large Magellanic Cloud

    Get PDF
    A deep survey of the Large Magellanic Cloud at ∼0.1-100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3-2.4 pending a flux increase by a factor of >3-4 over ∼2015-2035. Large-scale interstellar emission remains mostly out of reach of the survey if its >10 GeV spectrum has a soft photon index ∼2.7, but degree-scale 0.1-10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1−10 per cent of the mechanical luminosity and diffusion is suppressed by two orders of magnitude within <100 pc. Finally, the survey could probe the canonical velocity-averaged cross-section for self-annihilation of weakly interacting massive particles for cuspy Navarro-Frenk-White profiles

    Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project

    Get PDF
    In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory

    High temporal and spatial resolution UV camera measurements at Stromboli: insights on passive SO2 gas emission, Strombolian eruptions, and puffing.

    No full text
    Stromboli is one of the most active volcanoes on Earth, and one of the few where passive degassing persistently coexists with the (non-passive) release of over-pressurized gas pockets during both explosions and gas puffing activity. These transient gas bursting-puffing phenomena are difficult to study by conventional spectroscopic scanning techniques (e.g., DOAS), since these have far too low temporal resolution. Here, we take advantage of the high spatial and time resolution (0.6-1 Hz) of the recently developed UV camera technique to obtain a simultaneous characterisation of all the different forms of SO2 release at Stromboli (including passive degassing, Strombolian eruptions and puffing). During a field campaign from 10th to 16th July, 2010, we observed at Stromboli a total SO2 flux averaging at ~ 70 t·d-1, but also showing large (10-30 t·d-1) cyclic fluctuations with periodicity of 400-1000 seconds. This periodic degassing behaviour, which was recently also detected at Mt. Etna, Erebus and Fuego, may be a systematic feature of basaltic volcanoes; a fact which - if confirmed - would bring profound implications for models of magma-gas flow in conduits, and for generation of basaltic explosions. These periodic SO2 flux variations were punctuated by brief SO2 flux peaks in coincidence with explosions. We obtained UV camera observations for 130 discrete explosions overall, and we found that the erupted SO2 mass per explosion ranged 2-55 kg, and averaged at ~20 kg. This corresponds to a daily explosive SO2 output rate of 4.2 ± 1.2 t·d-1, or 5-8% of the total SO2 flux (~ 70 t·d-1). Our SO2 explosive dataset data was integrated and inter-compared with infrared radiometer data and very long period (VLP) seismic traces, yielding a complete geophysical- geochemical data corroboration. Finally, we also obtained a very first direct estimate of the puffing contribution to the total SO2 budget. It is known that Stromboli's active vents continuously release gas in a stream of gas puffs (emission of gas in discrete packages). After a few tents of meters, puffs cool, decelerate, expand, and finally mingle within the surrounding plume contributed by other vents; therefore, only a few puffs retained their shape long enough to be imaged with UV camera (at least during our observations). According to our preliminary data, the SO2 mass contributed by each single puff varies between 0.14 and 0.45 kg. We thus conclude that puffing may account for 10-20% of the total SO2 daily output from Stromboli. Finally, we confirm that passive degassing is likely to be the most significant form of SO2 release at Stromboli (and possibly other open-vent basaltic volcanoes)
    corecore