39,173 research outputs found

    XMM-Newton view of the double-peaked Fe K-alpha complex in E1821+643

    Full text link
    We present the results of the analysis of the hard band XMM-Newton spectra of the luminous, L(2-10keV)~3.4E+45 erg/s, radio-quiet quasar, E1821+643. Two emission features were observed in the 6-7 keV rest frame band, confirming previous Chandra detection of these structures. We interpret these features as two single emission lines, one consistent with the neutral Fe K-alpha line at 6.4 keV and the other most likely due to FeXXVI. If related to the quasar, the high-energy emission line should originate in highly ionised matter, i.e. the accretion disc or the clouds of the emission line regions. Alternatively, it may be related to the intergalactic medium of the rich galaxy cluster in which E1821+643 is embedded. A composite broad emission line in combination with an absorption line model, however, also fits the data well. We discuss the possible physical interpretations of the origin of these features.Comment: Accepted for publication in A&A, 7 pages and 7 figure

    Parametrization of the angular correlation and degree of linear polarization in two-photon decays of hydrogen-like ions

    Full text link
    The two-photon decay in hydrogen-like ions is investigated within the framework of second order perturbation theory and Dirac's relativistic equation. Special attention is paid to the angular correlation of the emitted photons as well as to the degree of linear polarization of one of the two photons, if the second is just observed under given angles. Expressions for the angular correlation and the degree of linear polarization are expanded in terms of cosθ\cos\theta-polynomials, whose coefficients depend on the atomic number and the energy sharing of the emitted photons. The effects of including higher (electric and magnetic) multipoles upon the emitted photon pairs beyond the electric-dipole approximation are also discussed. Calculations of the coefficients are performed for the transitions 2s1/21s1/22s_{1/2}\rightarrow1s_{1/2}, 3d3/21s1/23d_{3/2}\rightarrow1s_{1/2} and 3d5/21s1/23d_{5/2}\rightarrow1s_{1/2}, along the entire hydrogen isoelectronic sequence (1Z1001\le Z \le 100)

    Optimized Herschel/PACS photometer observing and data reduction strategies for moving solar system targets

    Get PDF
    The "TNOs are Cool!: A survey of the trans-Neptunian region" is a Herschel Open Time Key Program that aims to characterize planetary bodies at the outskirts of the Solar System using PACS and SPIRE data, mostly taken as scan-maps. In this paper we summarize our PACS data reduction scheme that uses a modified version of the standard pipeline for basic data reduction, optimized for faint, moving targets. Due to the low flux density of our targets the observations are confusion noise limited or at least often affected by bright nearby background sources at 100 and 160\,μ\mum. To overcome these problems we developed techniques to characterize and eliminate the background at the positions of our targets and a background matching technique to compensate for pointing errors. We derive a variety of maps as science data products that are used depending on the source flux and background levels and the scientific purpose. Our techniques are also applicable to a wealth of other Herschel solar system photometric observations, e.g. comets and near-Earth asteroids. The principles of our observing strategies and reduction techniques for moving targets will also be applicable for similar surveys of future infrared space projects.Comment: Accepted for publication in Experimental Astronom

    Variabilidade genética de Salvia lachnostachys Benth. (Lamiaceae).

    Get PDF
    11ª Jornada Paulista de Plantas Medicinais. Resumos

    Microscopic nanomechanical dissipation in gallium arsenide resonators

    Full text link
    We report on a systematic study of nanomechanical dissipation in high-frequency (approximatively 300 MHz) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300K

    First-Principles Study of Substitutional Metal Impurities in Graphene: Structural, Electronic and Magnetic Properties

    Get PDF
    We present a theoretical study using density functional calculations of the structural, electronic and magnetic properties of 3d transition metal, noble metal and Zn atoms interacting with carbon monovacancies in graphene. We pay special attention to the electronic and magnetic properties of these substitutional impurities and found that they can be fully understood using a simple model based on the hybridization between the states of the metal atom, particularly the d shell, and the defect levels associated with an unreconstructed D3h carbon vacancy. We identify three different regimes associated with the occupation of different carbon-metal hybridized electronic levels: (i) bonding states are completely filled for Sc and Ti, and these impurities are non-magnetic; (ii) the non-bonding d shell is partially occupied for V, Cr and Mn and, correspondingly, these impurties present large and localized spin moments; (iii) antibonding states with increasing carbon character are progressively filled for Co, Ni, the noble metals and Zn. The spin moments of these impurities oscillate between 0 and 1 Bohr magnetons and are increasingly delocalized. The substitutional Zn suffers a Jahn-Teller-like distortion from the C3v symmetry and, as a consequence, has a zero spin moment. Fe occupies a distinct position at the border between regimes (ii) and (iii) and shows a more complex behavior: while is non-magnetic at the level of GGA calculations, its spin moment can be switched on using GGA+U calculations with moderate values of the U parameter.Comment: 13 figures, 4 tables. Submitted to Phys. Rev. B on September 26th, 200

    Solar analogs with and without planets: Tc_c trends and galactic evolution

    Full text link
    We explore a sample of 148 solar-like stars to search for a possible correlation between the slopes of the abundance trends versus condensation temperature (known as the Tc slope) both with stellar parameters and Galactic orbital parameters in order to understand the nature of the peculiar chemical signatures of these stars and the possible connection with planet formation. We find that the Tc slope correlates at a significant level with the stellar age and the stellar surface gravity. We also find tentative evidence that the Tc slope correlates with the mean galactocentric distance of the stars (Rmean), suggesting that stars that originated in the inner Galaxy have fewer refractory elements relative to the volatile ones. We found that the chemical peculiarities (small refractory-to-volatile ratio) of planet-hosting stars is probably a reflection of their older age and their inner Galaxy origin. We conclude that the stellar age and probably Galactic birth place are key to establish the abundances of some specific elements.Comment: Proceedings of the GREAT-ITN conference: The Milky Way Unravelled by Gaia. Will be published in the "EAS Publications Series

    Contribution of agronomic traits for sugar yield in sweet sorghum genotypes

    Get PDF
    Made available in DSpace on 2017-12-01T23:21:02Z (GMT). No. of bitstreams: 1 Revistamilho....pdf: 584959 bytes, checksum: 79a13bb2b58db482a162eaa6946135a0 (MD5) Previous issue date: 2017-12-01bitstream/item/167941/1/Revista-milho....pd
    corecore