11,335 research outputs found

    Uniting the Quiescent Emission and Burst Spectra of Magnetar Candidates

    Full text link
    Spectral studies of quiescent emission and bursts of magnetar candidates using XMM-Newton, Chandra and Swift data are presented. Spectra of both the quiescent emission and the bursts for most magnetar candidates are reproduced by a photoelectrically absorbed two blackbody function (2BB). There is a strong correlation between lower and higher temperatures of 2BB (kT_LT and kT_HT) for the magnetar candidates of which the spectra are well reproduced by 2BB. In addition, a square of radius for kT_T (R_LT^2) is well correlated with a square of radius for kT_HT (R_HT^2). A ratio kT_LT/kT_HT ~ 0.4 is nearly constant irrespective of objects and/or emission types (i.e., the quiescent emission and the bursts). This would imply a common emission mechanism among the magnetar candidates. The relation between the quiescent emission and the bursts might be analogous to a relation between microflares and solar flares of the sun. Three AXPs (4U 0142+614, 1RXS J170849.0-400910 and 1E 2259+586) seem to have an excess above ~7 keV which well agrees with a non-thermal hard component discovered by INTEGRAL.Comment: 17 pages, 5 figures, 12 tables, Accepted for publication in PAS

    Spectral Comparison of Weak Short Bursts to the Persistent X-rays from the Magnetar 1E 1547.0-5408 in its 2009 Outburst

    Get PDF
    In January 2009, the 2.1-sec anomalous X-ray pulsar 1E 1547.0-5408 evoked intense burst activity. A follow-up Suzaku observation on January 28 recorded enhanced persistent emission both in soft and hard X-rays (Enoto et al. 2010b). Through re-analysis of the same Suzaku data, 18 short bursts were identified in the X-ray events recorded by the Hard X-ray Detector (HXD) and the X-ray Imaging Spectrometer (XIS). Their spectral peaks appear in the HXD-PIN band, and their 10-70 keV X-ray fluences range from ~2e-9 erg cm-2 to 1e-7 erg cm-2. Thus, the 18 events define a significantly weaker burst sample than was ever obtained, ~1e-8-1e-4 erg cm-2. In the ~0.8 to ~300 keV band, the spectra of the three brightest bursts can be represented successfully by a two-blackbody model, or a few alternative ones. A spectrum constructed by stacking 13 weaker short bursts with fluences in the range (0.2-2)e-8 erg s-1 is less curved, and its ratio to the persistent emission spectrum becomes constant at ~170 above ~8 keV. As a result, the two-blackbody model was able to reproduce the stacked weaker-burst spectrum only after adding a power-law model, of which the photon index is fixed at 1.54 as measured is the persistent spectrum. These results imply a possibility that the spectrum composition employing an optically-thick component and a hard power-law component can describe wide-band spectra of both the persistent and weak-burst emissions, despite a difference of their fluxes by two orders of magnitude. Based on the spectral similarity, a possible connection between the unresolved short bursts and the persistent emission is discussed.Comment: 21 pages, 18 figures and 3 tables. Accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journa

    Differences in Canadian and U.S. Farm Structure: What the Canadian Farm Typology Shows

    Get PDF
    Canadian and U.S. farms vary widely in size and other characteristics, ranging from very small retirement and residential farms to firms with sales in the millions. Agriculture and Agri-Food Canada (AAFC) and the United States Department of Agriculture’s (USDA’s) Economic Research Service (ERS) have each developed a farm typology to classify farms into more homogeneous groups. These typologies provide useful insights into farm structure in each country. It is difficult, however, to use the typologies to compare farm structure in Canada and the United States, because the definitions within the two typologies differ. To make direct comparisons of farm structure in the two countries the Canadian typology was applied to the farms in both nations.Crop Production/Industries, Farm Management,

    Thermal noise in half infinite mirrors with non-uniform loss: a slab of excess loss in a half infinite mirror

    Get PDF
    We calculate the thermal noise in half-infinite mirrors containing a layer of arbitrary thickness and depth made of excessively lossy material but with the same elastic material properties as the substrate. For the special case of a thin lossy layer on the surface of the mirror, the excess noise scales as the ratio of the coating loss to the substrate loss and as the ratio of the coating thickness to the laser beam spot size. Assuming a silica substrate with a loss function of 3x10-8 the coating loss must be less than 3x10-5 for a 6 cm spot size and a 7 micrometers thick coating to avoid increasing the spectral density of displacement noise by more than 10%. A similar number is obtained for sapphire test masses.Comment: Passed LSC (internal) review. Submitted to Phys. Rev. D. (5/2001) Replacement: Minor typo in Eq. 17 correcte

    Time-evolution of Peak Energy and Luminosity Relation within Pulses for GRB 061007: Probing Fireball Dynamics

    Full text link
    We perform a time-resolved spectral analysis of bright, long Gamma-ray burst GRB 061007 using Suzaku/WAM and Swift/BAT. Thanks to the large effective area of the WAM, we can investigate the time evolution of the spectral peak energy, Et_peak and the luminosity Lt_iso with 1-sec time resolution, and we find that luminosity Lt_iso with 1-sec time resolution, and we find that the time-resolved pulses also satisfy the Epeak-Liso relation, which was found for the time-averaged spectra of other bursts, suggesting the same physical conditions in each pulse. Furthermore, the initial rising phase of each pulse could be an outlier of this relation with higher Et_peak value by about factor 2. This difference could suggest that the fireball radius expands by a factor of 2-4 and/or bulk Lorentz factor of the fireball is decelerated by a factor of 4 during the initial phase, providing a new probe of the fireball dynamics in real time.Comment: 21 pages, 16 figures, accepted for publication in PAS

    The dynamical transition in proteins and non-Gaussian behavior of low frequency modes in Self Consistent Normal Mode Analysis

    Get PDF
    Self Consistent Normal Mode Analysis (SCNMA) is applied to heme c type cytochrome f to study temperature dependent protein motion. Classical Normal Mode Analysis (NMA) assumes harmonic behavior and the protein Mean Square Displacement (MSD) has a linear dependence on temperature. This is only consistent with low temperature experimental results. To connect the protein vibrational motions between low temperature and physiological temperature, we have incorporated a fitted set of anharmonic potentials into SCNMA. In addition, Quantum Harmonic Oscillator (QHO) theory has been used to calculate the displacement distribution for individual vibrational modes. We find that the modes involving soft bonds exhibit significant non-Gaussian dynamics at physiological temperature, which suggests it may be the cause of the non-Gaussian behavior of the protein motions probed by Elastic Incoherent Neutron Scattering (EINS). The combined theory displays a dynamical transition caused by the softening of few "torsional" modes in the low frequency regime (< 50cm-1or 0.6ps). These modes change from Gaussian to a classical distribution upon heating. Our theory provides an alternative way to understand the microscopic origin of the protein dynamical transition.Comment: 17 pages, 6 figures, 1 tabl

    The Suzaku Discovery of A Hard Power-Law Component in the Spectra of Short Bursts from SGR 0501+4516

    Full text link
    Using data with the Suzaku XIS and HXD, spectral studies of short bursts from the soft gamma repeater SGR 0501+4516 were performed. In total, 32 bursts were detected during the ~60 ks of observation conducted in the 2008 August activity. Excluding the strongest one, the remaining 31 bursts showed an average 2--40 keV fluence of 1.0(-0.5,+0.3)*10^-9 erg cm^-2. A 1--40 keV spectrum summed over them leaves significant positive residuals in the HXD-PIN band with chi^2/d.o.f. = 74/50, when fitted with a two-blackbody function. By adding a power law model, the fit became acceptable with chi^2/d.o.f. = 56/48, yielding a photon index of Gamma=1.0(-0.3,+0.4). This photon index is comparable to Gamma=1.33(-0.16,+0.23) (Enoto et al. 2010a) for the persistent emission of the same object obtained with Suzaku. The two-blackbody components showed very similar ratios, both in the temperature and the emission radii, to those comprising the persistent emission. However, the power-law to two-blackbody flux ratio was possibly higher than that of the persistent emission at 2.6 sigma level. Based on these measurements, average wide-band properties of these relatively weak bursts are compared with those of the persistent emission.Comment: 11 pages, 8 figures, 2 tables, Accepted for publication in PASJ (Suzaku & MAXI special issue

    Axions and the pulsation periods of variable white dwarfs revisited

    Get PDF
    Axions are the natural consequence of the introduction of the Peccei-Quinn symmetry to solve the strong CP problem. All the efforts to detect such elusive particles have failed up to now. Nevertheless, it has been recently shown that the luminosity function of white dwarfs is best fitted if axions with a mass of a few meV are included in the evolutionary calculations. Our aim is to show that variable white dwarfs can provide additional and independent evidence about the existence of axions. The evolution of a white dwarf is a slow cooling process that translates into a secular increase of the pulsation periods of some variable white dwarfs, the so-called DAV and DBV types. Since axions can freely escape from such stars, their existence would increase the cooling rate and, consequently, the rate of change of the periods as compared with the standard ones. The present values of the rate of change of the pulsation period of G117-B15A are compatible with the existence of axions with the masses suggested by the luminosity function of white dwarfs, in contrast with previous estimations. Furthermore, it is shown that if such axions indeed exist, the drift of the periods of pulsation of DBV stars would be noticeably perturbed.Comment: Accepted for publication in Astronomy & Astrophysic

    Suzaku Discovery of a Hard X-Ray Tail in the Persistent Spectra from the Magnetar 1E 1547.0-5408 during its 2009 Activity

    Full text link
    The fastest-rotating magnetar 1E 1547.0-5408 was observed in broad-band X-rays with Suzaku for 33 ks on 2009 January 28-29, 7 days after the onset of its latest bursting activity. After removing burst events, the absorption-uncorrected 2-10 keV flux of the persistent emission was measured with the XIS as 5.7e-11 ergs cm-2 s-1, which is 1-2 orders of magnitude higher than was measured in 2006 and 2007 when the source was less active. The persistent emission was also detected significantly with the HXD in >10 keV up to at least ~110 keV, with an even higher flux of 1.3e-10 ergs cm-2 s-1 in 20-100 keV. The pulsation was detected at least up to 70 keV at a period of 2.072135+/-0.00005 s, with a deeper modulation than was measured in a fainter state. The phase-averaged 0.7-114 keV spectrum was reproduced by an absorbed blackbody emission with a temperature of 0.65+/-0.02 keV, plus a hard power-law with a photon index of ~1.5. At a distance of 9 kpc, the bolometric luminosity of the blackbody and the 2-100 keV luminosity of the hard power-law are estimated as (6.2+/-1.2)e+35 ergs s-1 and 1.9e+36 ergs s-1, respectively, while the blackbody radius becomes ~5 km. Although the source had not been detected significantly in hard X-rays during the past fainter states, a comparison of the present and past spectra in energies below 10 keV suggests that the hard component is more enhanced than the soft X-ray component during the persistent activity.Comment: 12 pages, 7 figures, PASJ Vol.62 No.2 accepte

    The S shape of a granular pile in a rotating drum

    Full text link
    The shape of a granular pile in a rotating drum is investigated. Using Discrete Elements Method (DEM) simulations we show that the "S shape" obtained for high rotation speed can be accounted for by the friction on the end plates. A theoretical model which accounts for the effect of the end plates is presented and the equation of the shape of the free surface is derived. The model reveals a dimensionless number which quantifies the influence of the end plates on the shape of the pile. Finally, the scaling laws of the system are discussed and numerical results support our conclusions
    corecore