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Self-consistent normal mode analysis �SCNMA� is applied to heme c type cytochrome f to study
temperature-dependent protein motion. Classical normal mode analysis assumes harmonic behavior and the
protein mean-square displacement has a linear dependence on temperature. This is only consistent with low-
temperature experimental results. To connect the protein vibrational motions between low and physiological
temperatures, we have incorporated a fitted set of anharmonic potentials into SCNMA. In addition, quantum
harmonic-oscillator theory has been used to calculate the displacement distribution for individual vibrational
modes. We find that the modes involving soft bonds exhibit significant non-Gaussian dynamics at physiological
temperature, which suggests that it may be the cause of the non-Gaussian behavior of the protein motions
probed by elastic incoherent neutron scattering. The combined theory displays a dynamical transition caused by
the softening of few “torsional” modes in the low-frequency regime ��50 cm−1 or �6 meV or �0.6 ps�.
These modes change from Gaussian to a classical distribution upon heating. Our theory provides an alternative
way to understand the microscopic origin of the protein dynamical transition.

DOI: 10.1103/PhysRevE.82.041917 PACS number�s�: 87.15.ad, 87.15.H�, 87.15.Zg

I. INTRODUCTION

Protein function is determined by both structural stability
and flexibility. The stability is needed to ensure appropriate
geometry of the protein, while the flexibility allows function
to proceed at an appropriate rate. Quantitative measurements
of the temperature-dependent atomic mean-square displace-
ments �MSDs� are possible by neutron scattering �1–3� and
Mössbauer absorption �4–6�. All of these experiments show
a “dynamical transition” in hydrated proteins, which is
marked by an abrupt MSD increase in the temperature range
160–240 K. It is believed that this dynamical transition is
correlated with protein function. Three prominent examples
are the myoglobin-CO binding kinetics �7�, electrostatic re-
laxation in green fluorescent protein �8�, and the Arrhenius
behavior of the electron transfer rate above the dynamical
transition temperature. However, the time scale and the
forms of the functionally important atomic modes remain a
subject of active discussion �9–11�.

Numerous theoretical studies of protein dynamics have
been carried out by molecular-dynamics simulations �12–15�
and normal mode analysis �NMA� �14,16–20�. NMA re-
quires the use of Maxwell-Boltzmann or Gaussian distribu-
tions to describe the probability distributions of individual
atoms or chemical bonds. Recently, several authors focused
on the study of the non-Gaussian behavior of the total elastic
incoherent neutron-scattering �EINS� profile from a protein
above dynamical transition temperature �21–25�. It should be
noted that the distribution of all-atom MSDs from an EINS
profile can still be non-Gaussian even if all atoms individu-
ally exhibit Gaussian dynamics. The Gaussian distribution,
which is the ground-state probability distribution for the

quantum harmonic oscillator �QHO�, is an appropriate ap-
proximation when ���kT ���200 cm−1�. In the Gaussian
distribution, the atom has maximum probability in the equi-
librium position. We find that in all self-consistent theories,
the use of a Gaussian distribution results in a molecular
structure that will tend to be more rigid than what would be
found by a more exact quantum approach. From Newton’s
second law, the classical harmonic oscillator �low frequency�
has highest probability at the edges of the well because the
atom moves most slowly near the classical turning points,
which is contrary to the Gaussian or ground-state probability
distribution. The exact quantum behavior of low-frequency
modes would approach the classical displacement. In this
paper we explore the role of incorporating the higher quan-
tum vibrational states. This shows a softening of the structure
in the correct temperature range.

The material studied by SCNMA is six-coordinate heme c
type cytochrome f �cyt f� �26�. The iron normal modes are
compared with the nuclear vibrational resonance spectros-
copy �NRVS� spectrum �27�. NRVS is uniquely capable of
displaying the low-frequency vibrational displacement spec-
trum of the Fe atom at the center of the heme as it sees all
modes and can give quantitative values for displacements. It
is then possible to define low-frequency heme modes that are
in agreement with observation with greater accuracy. This is
a much more stringent test than most Raman comparisons as
Raman displacements cannot be calculated with any accu-
racy.

SCNMA incorporates nonlinearity into harmonic calcula-
tion by thermal-statistically averaging the curvature of the
bond potential energies. Because vibrational modes that are
not overdamped are detected by Raman and IR, one expects
the effective Hamiltonian to be approximately harmonic. SC-
NMA should therefore be a valid approach. The SCNMA
formulation arises from a variational procedure that finds the*ewp@purdue.edu
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best effective harmonic Hamiltonian by minimizing the free
energy. This method is described in detail elsewhere �28�. It
has been successfully employed on models with multiple hy-
drogen stretching bonds such as the helix melting, conforma-
tional change in DNA, drug-helix stability, etc. �29–32�. In
those papers a Gaussian distribution was used to describe the
displacement distribution. In this paper, we will further de-
velop this method to incorporate non-Gaussian distributions
into our calculation.

II. QHO THEORY APPLIED TO INTERNAL ATOMIC
BONDS

A. Displacement distribution of the internal atomic bonds

SCNMA can incorporate anharmonic effects which alter
vibrational frequencies as temperature changes. To do this it
must incorporate a model of the anharmonicities in bonds.
One assumes potential models for each internal degree of
freedom of a bond. For example, stretch degrees are assumed
to be represented by a Morse potential. These potential pa-
rameters are determined by fitting to refined data of effective
force constants and bond length at a given temperature from
experimental data. The formulas used to calculate
temperature-dependent effective force constants will give a
good fit based on minimization of the free energy of the
system.

For a biomolecule with N atoms and M internal atomic
bonds M is much larger than N. Standard NMA will give us
3N−6 nonzero normal modes. Their frequencies can be writ-
ten as �= ��1 ,�2 , . . . ,�3N−6�. The total MSD for frequency
� can be written as

��
i=1

n

miri
2� =

�

2�
coth� ��

2kBT
	 . �1�

Subsequently, the temperature-dependent total mean-square
amplitude for the one single internal bond is the sum of all
normal mode amplitudes, which can be written as

D2 = �
�

D�
2 = �

�

d�
2 coth� ��

2kBT
	 = �

�

�

2�
coth� ��

2kBT
	
s�
2,

�2�

where D2 is the total mean-square amplitude over all fre-
quency modes, D�

2 is the mean-square amplitude contribu-
tion, d�

2 is the zero-point mean-square amplitude for fre-
quency �, and 
s�
2 is the projection of the normalized
eigenvectors at eigenvalues �frequency� � onto the mass-
weighted internal coordinates. These amplitudes can repre-

sent a linear distance �for stretching bond� or an angular
twisting �for angle bend and dihedral bond�.

The Hamiltonian for one single internal bond can be writ-
ten as

Ĥ = −
�2

2
�q�

2 +
1

2
�2q�

2 = −
�2
s�
2

2

d2

du�
2 +

1

2
s�
2
�2u�

2 , �3�

where q� is the mass-weighted Cartesian coordinate dis-
placement variables and u� is the internal coordinate dis-
placement variable for mode �. Similar as the one-dimension
QHO problem, the wave function for one particular internal
bond at frequency � can be written as

�n�u�� =� 1

2nn!
� 1

2�d�
2 	1/4

e−u�
2 /4d�

2
Hn�� 1

2d�
2 u�	 ,

�4�

where Hn is the Hermite polynomial and �n is the wave
function for the nth excitation state. Here, we note that the
ground-state wave function �0 is in fact a Gaussian. The
corresponding quantized energy levels are

En = ���n + 1
2� . �5�

From the Boltzmann distribution, the displacement distribu-
tion of this internal coordinate for mode � can be written as

f��u�� = Tr�e−H/kBT� =

�
n=0

�

exp�− ���n +
1

2
	

kBT
�n

2�u��
�
n=0

�

exp�− ���n +
1

2
	

kBT


,

�6�

where H is the Hamiltonian. The joint probability density
function for �= ��1 ,�2 , . . . ,�3N−6� can be subsequently writ-
ten as

g�u�1
,u�2

, . . .� = �
�

f��u�� . �7�

The total displacement is u=��u�. Using a transformation of
variables,

�u = �
�

u�,u�2
= u�2

,u�3
= u�3

, . . .� , �8�

the total displacement distribution can be obtained as

f�u� = �
−�

�

¯ �
−�

�

g�u − �
j=2

3N−6

u�j
,u�2

,u�3
, . . .	du�2

du�3
¯ u�3N−6

. �9�
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To reduce unsystematic errors, u�1
is chosen to have the

largest amplitude of the 3N−6 modes. Equation �9� requires
3N−7 integrals of a 3N−6 multivariable function to calcu-
late the actual displacement distribution of one single inter-
nal bond. For one standard NMA calculation, �3N−7�	M
integrals are solved. To reduce the required calculation time,
approximation methods are employed, as introduced in the
next section.

B. Displacement distribution for single frequency harmonic
motion and an approximation method

To understand the approximate temperature and frequency
behavior of non-Gaussian distributions, that of a single fre-
quency normal mode displacement is shown in Fig. 1. It
shows the temperature-dependent single frequency displace-
ment distribution at 300 K for �a� ��50 cm−1 ��0.67 ps�,
�b� 50���80 cm−1 �0.42–0.67 ps�, and �c� ��80 cm−1.

Figure 1 shows the displacement probability for a single
frequency, but the displacement for a single bond is a super-
position of many such frequency contributions with different
amplitudes. The spread in amplitudes comes from the projec-
tion factors �
s�
2� from Eqs. �2� and �3� which come from
the eigenvectors of the various modes. Even for low frequen-
cies, any bond amplitude would be the sum of many distri-
butions like those in Fig. 1, all at different amplitudes from
the origin. The central limit theorem �CLT� supposes that a
large sum of this kind will add up to a Gaussian distribution.
This assumption has been central to all previous calculations
using SCNMA. The situation could be quite different, how-
ever, if only a few low-frequency modes dominate in the
displacement of particular bonds. In such a case, for some
range of temperatures, the displacement probability could re-
semble the plot in Fig. 1�a�. We emphasize that the hydrogen
bond stretching modes are typically above 100 cm−1 and fall
into the Gaussian distribution regime. The bond modes that

are softer than the hydrogen stretching bonds, i.e., the tor-
sional motions, may exhibit non-Gaussian behavior at physi-
ological temperature. All proteins have torsional modes, and
this effect may be manifested in many proteins.

From Eq. �6�, the displacement distribution of the single
frequency mode is approximately Gaussian when

��T� � 0.27T cm−1 �T in kelvin� , �10�

and more classical when

��T� � 0.17T cm−1 �T in kelvin� . �11�

From Eqs. �10� and �11�, the single frequency mode in the
frequency regime �50 cm−1 �or �6 meV or �0.7 ps� will
transition from a Gaussian to a more classical distribution
upon heating from low temperature to room temperature. It
should be noted that the prominent “boson peak” �1–3.5
meV or 10–30 cm−1� from neutron scattering �3,16,33� or
the “doming mode” from NRVS �27� and IR �34� experi-
ments lie in this frequency regime.

To simplify the calculation, we use the assumption that
the sum of the independent Gaussian variables is still a
Gaussian, and we treat all the normal modes above 80 cm−1

as one Gaussian distribution. Based on CLT, we can further
simply the low-frequency displacement distribution calcula-
tion. If the displacement u for one internal bond is comprised
of many low-frequency modes, we can treat it as a Gaussian.
To test how many significant low-frequency ��80 cm−1�
modes are needed to be able to use the Gaussian approxima-
tion without loss of accuracy, several NMAs and subsequent
displacement distribution calculations were run on the heme
core. We found less than 5% deviation from Gaussian in the
distribution of u �Eq. �9�� when u has more than five low-
frequency modes, each accounting for more than 10% of the
total potential energy. Implementing these two approxima-
tions reduces our calculation time by a factor of more than
100.
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FIG. 1. Characterization of the
single frequency displacement
distribution at 300 K in �a� the
displacement is similar to the clas-
sical distribution, �c� the displace-
ment distribution is similar to a
Gaussian, and �b� is a cross be-
tween the two. The horizontal axis
is displacement variable u.
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III. METHODS

An initial classical NMA calculation was performed on
the six-coordinate heme c type cytochrome f using the
CHARMM force field �35,36�. An all-atom model �36� was
constructed from the x-ray coordinates �Protein Data Bank
�PDB� identifier 1EWH �26��. The model was subjected to
force field minimization until the root-mean-square gradient
of the potential energy was less than 0.0001 prior to perform-
ing a standard normal mode calculation with the VIBRAN
facility in CHARMM �35�. The six lowest normal mode fre-
quencies are less than 10−4 cm−1 and the seventh lowest fre-
quency is larger than 1 cm−1, which indicates a good con-
vergence of the minimization procedure. The iron
displacements were extracted from the normal modes, and
we calculated the iron vibrational density of states �VDOS�
�37,38�.

The bond stretch, angle bend, and dihedral bond force
constants from CHARMM were adopted into our NMA and
SCNMA programs. The heme force constants and the heme-
protein backbone interaction force constants were refined by
comparison with the NRVS spectrum �27�. The method of
force field refinement process was described elsewhere
�39–41�. The usual procedure is to make a small modifica-
tion of the force constants and compare the new output to the
measured NRVS.

The anharmonic functional forms were chosen from Ref.
�42�, in which Morse function, harmonic cosine function,
and dihedral cosine function were used to describe bond
stretch interactions, angle bend interactions, and torsional
bond interactions. The three parameters of the Morse poten-
tial and dihedral bond potential and the two parameters of
angle bend potential can be fitted by the resulting low-
temperature force constants along with data on atom dis-
tances and bond strength. The low-temperature force con-
stants are the second derivatives of the anharmonic potentials
at the potential-well minimums. The parameters for the
stretching bond strength, which is directly related to the dis-
sociation energy, and that of dihedral bond strength �multi-
plicity� were obtained from the CHARMM program.

SCNMA was employed to allow exploration of
temperature-dependent changes in force constant and ther-
mal expansion effects �28�. This method has been described
in detail elsewhere �28–32�, where the Gaussian approxima-
tion was used for the displacement variable u. The only dif-
ference here from the previous SCNMA is the explicit inclu-
sion of non-Gaussian distributions for low-frequency modes.
Here, we give a brief description of the computation:

�i� Input the effective force constants �the first iteration
uses the force constants refined to experimental data� into the
NMA and find the initial normal mode eigenvalues and
eigenvectors.

�ii� Calculate each internal coordinate’s total mean-square
amplitude D2 and each normal mode contribution D�

2 .
�iii� Calculate each internal coordinate displacement dis-

tribution f�u�.
�iv� Calculate a new set of the effective force constants.
�v� Iterate to self-consistency.
The calculation converged within 20 iterations.

IV. RESULTS AND DISCUSSION

Figure 2 shows the comparison between the iron VDOSs
obtained from classical NMA and the NRVS experimental
results. Good agreement is achieved over a wide range of
frequencies, which indicates a useful choice for the low-
temperature limit force field. Here, we give a summary of the
general results: �1� below 80 cm−1 are mostly iron out-of-
plane motions, �2� the 80–300 cm−1 region has both iron
in-plane and out-of-plane features, and �3� �300 cm−1 are
mainly iron in-plane motions. If the calculations did not in-
clude anharmonic effects, the total displacements would be
linear in temperature. Classical NMA results show that at
low temperature ��150 K�, the iron out-of-plane MSD is
about three times the iron in-plane MSD despite the fact that
the iron in-plane motion has two degrees of freedom versus
the single degree of out-of-plane motion.

Figures 3 and 4 show the cyt f iron total MSD from SC-
NMA. These results are in general agreement with the Möss-
bauer absorption experimental results conducted on other
heme proteins. The high-frequency ��200 cm−1� normal
modes are softened on an average of 1–2 %. This is because
the high-frequency normal modes are dominated by covalent
stretching bonds which have relatively larger strength and
deeper potential wells. Moreover, these high-frequency
atomic motions follow a strict narrow Gaussian distribution.
Figure 4 shows that the iron dynamical transition is caused
by iron low-frequency out-of-plane motions. At lower fre-
quency, the large iron out-of-plane motion becomes possible
because of the small energy involved in changing the torsion
angles. As temperature increases, more and more displace-
ment will spread out from the Gaussian centroid. This low-
frequency classical behavior of the atomic displacement dis-
tributions coincides with the fact that the curvature of the
potential function decreases over the distance from the cen-
troid, which results in the abrupt MSD increase seen in our
SCNMA model as compared with calculations implementing
only Gaussian distributions �Fig. 4�.
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FIG. 2. �Color online� Comparison of the experimental �from
Ref. �43�� and theoretical �from classical NMA� cytochrome f iron
VDOSs. Solid line: experiment; dotted line: theory.
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To analyze the protein flexibility, the force strength de-
fined by Zaccai �44� is generally used by other authors �45�,

k0 =
kB

d�r2�
dT

. �12�

From this definition, the iron force strength decreases by a
factor of �5–7. From NMA, the force constant is k0=m�2,
and we extract � to find r2. We found that the dihedral

bonds, which are the major dynamical elements contributing
to the iron dynamical transition in our model, are softened by
only �20%, as shown in Table I. The difference between the
two definitions can be explained with Eq. �1�. A simple plot
of Eq. �1� �Fig. 5� shows that r2 increases exponentially be-
low 50 cm−1. Our results show significant lowering of fre-
quencies in this frequency region. Moreover, we found that
atoms with internal coordinates associated with soft bonds
exhibit a larger MSD increase than other atoms in one par-
ticular normal mode.

The MSD spread over frequency increases disproportion-
ally upon heating, as shown in Fig. 6. At temperatures below
�150 K, the iron MSD for the normal mode frequencies
that are below 50 cm−1 takes about 84% of the total iron
MSD, while at 300 K it increases to 92%.

Generally speaking, the normal modes that participate in
biochemical reactions should have the largest motional am-
plitudes. The largest amplitude among the iron out-of-plane
normal modes—normally characterized as the “doming
mode”—has been intensively studied experimentally
�34,46–48� and theoretically �49–52�. This mode is Raman
inactive in a fourfold symmetric porphyrin. The IR spectros-
copy and NRVS of cytochrome f failed to identify a well-
resolved mode with such a character, and with the intensity
expected for a heme doming mode in the low-frequency re-
gion. The modes around 40 and 80 cm−1 have been assigned
to have the doming features by various authors �48,51,53�. In
our SCNMA calculation, the normal modes 80 cm−1 have
the features of both iron doming motions and in-plane mo-
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FIG. 3. �Color online� The iron MSD vs temperature plot for
various heme proteins. Line: iron MSD of cyt f by classical NMA.
Cross and dashed line: iron MSD of cyt f from SCNMA with
Gaussian distribution approximation. Star: iron MSD of cyt f from
our SCNMA by implementing non-Gaussian displacement distribu-
tion. Diamond: iron MSD of myoglobin by Mössbauer absorption
measurement from Ref. �4�. Upper triangle: iron MSD of cyt c by
Mössbauer absorption measurement from Ref. �5�.
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FIG. 4. The cyt f iron in-plane and out-of-plane MSDs from
SCNMA. Dashed line: iron in-plane MSD from classical NMA;
circle: iron in-plane motion from SCNMA; solid line: iron out-of-
plane motion from classical NMA; star: iron out-of-plane motion
from SCNMA.

TABLE I. The softening of the iron dihedral force constant from
self-consistent normal mode analysis �SCNMA�.

Bond type
�150 K

�mdyn Å2 / rad�
300 K

�mdyn Å2 / rad�
Percentage softened

�%�

Fe-N-C-C 0.127 0.096 24.4

N-Fe-N-C 0.135 0.111 17.9

Fe-N-C�-C� 0.062 0.050 19.4

N-Fe-N�-N� 0.098 0.072 16.3
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FIG. 5. �Color online� A plot of ��i=1
n miri

2� as a function of
temperature �T� and �low� frequency � from Eq. �1�. u0 is one
atomic weight.
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tions. The iron MSD in the frequency regime 70–90 cm−1

takes less than 10% of the total MSD, and these modes are
close to Gaussian distributions at room temperature from the
QHO theory. A theoretical study of the doming mode has
been carried out earlier by Li and Zgierski �49� on a five-
coordinated heme model. In the study, the doming mode was
predicted to be around 50 cm−1 and was calculated to be
35 cm−1. Their analysis found that the doming mode takes
about 90% of the iron MSD at room temperature. In one
previous NMA calculation, one 37 cm−1 doming mode was
found in four-coordinate heme compound Fe�OEP�, which
takes 67% of the total iron MSD �unpublished results�. In our
six-coordinate cyt f SCNMA, three normal modes that have
the most iron MSD are 19, 35, and 49 cm−1 at low tempera-
ture and softened to 14, 23, and 37 cm−1. These three modes
take 63% of the iron MSD and increase to 81% at room
temperature. We assign them to the doming modes due to
their significant doming features. The QHO theory indicates
that these modes are Gaussian distributions at low tempera-
ture ��100 K� and more classical at room temperature �300
K�. As temperature increases, these modes develop other fea-
tures such as saddling and ruffling due to the softening of the
dihedral bonds that are associated with these modes. The
energy distribution shows that these doming modes are
highly delocalized, i.e., the potential energy is distributed
among a large number of internal coordinates, and the kinetic
energy is distributed among a large number of atoms. We

also observe that the iron low-frequency motions are in
phase with some other soft bond atoms.

Besides the doming mode, some other significant water-
protein motions are observed in the frequency regime below
50 cm−1. These modes are softened by 20–50 % from low
temperature to room temperature. These results can also
qualitatively explain the two onsets of anharmonicity sug-
gested by several authors �9,54� as they proposed that there
are two motional components: one happens at T of 100 K
and one at T of 200–230 K. As shown in Fig. 6, lower-
frequency modes have a relatively lower dynamical transi-
tion temperature.

The statistical properties of fast hydrated protein motions
have been analyzed by neutron-scattering �21� and x-ray dif-
fraction �10� experiments. At temperatures below 200 K, the
displacement distribution is statistically a Gaussian. How-
ever, a deviation from a Gaussian distribution becomes sig-
nificant at temperatures above 240 K. In our SCNMA calcu-
lation, below 100 K, the motions of individual atoms exhibit
Gaussian behavior, but starting from 100 K, the atoms par-
ticipating in soft internal coordinates transition from Gauss-
ian to classical distribution upon heating. The percentage of
heavy atoms that exhibit classical behavior rises to 20% at
300 K. This result agrees with the proposal by other authors
who suggested that the protein dynamical transition is caused
by water-induced torsional jump �21,3�. Furthermore, we
also quantitatively identify that the normal modes that con-
tribute to the dynamical transition lie in the frequency regime
of �50 cm−1 at temperatures below the dynamical transition
temperature.

V. CONCLUSION

SCNMA can be used to study temperature-dependent pro-
tein vibrational motions. In the past, all such calculations
assumed Gaussian displacement distributions. However,
single oscillators depart from Gaussian distribution at higher
temperatures. This departure from Gaussian behavior was
studied quantitatively here using the QHO theory and SC-
NMA. Our study of heme c type cytochrome f has led us to
identifying some specific features of the atomic interactions
which may be of general validity. Our results show that only
a few normal modes account for most of the motional am-
plitudes of a significant set of bonds. These modes lie in the
frequency regime �50 cm−1 �or �6 meV or �0.6 ps�. The
higher-frequency normal modes essentially maintain a nar-
row Gaussian distribution. Above 100 K, the low-frequency
modes transition from Gaussian to more classical distribu-
tions upon heating, facilitating the softening of dihedral �tor-
sional� bonds, which seems to lead to the dynamical transi-
tion.
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