108 research outputs found

    Revisiting and modelling the woodland farming system of the early Neolithic Linear Pottery Culture (LBK), 5600–4900 B.C

    Get PDF
    International audienceThis article presents the conception and the conceptual results of a modelling representation of the farming systems of the Linearbandkeramik Culture (LBK). Assuming that there were permanent fields (PF) then, we suggest four ways that support the sustainability of such a farming system over time: a generalized pollarding and coppicing of trees to increase the productivity of woodland areas for foddering more livestock, which itself can then provide more manure for the fields, a generalized use of pulses grown together with cereals during the same cropping season, thereby reducing the needs for manure. Along with assumptions limiting bias on village and family organizations, the conceptual model which we propose for human environment in the LBK aims to be sustainable for long periods and can thereby overcome doubts about the PFs hypothesis for the LBK farming system. Thanks to a reconstruction of the climate of western Europe and the consequent vegetation pattern and productivity arising from it, we propose a protocol of experiments and validation procedures for both testing the PFs hypothesis and defining its eco-geographical area

    Vegetative development, fruits yield and optimization of pineapple cv. Pérola with different levels of irrigation

    Get PDF
    Apesar de ser uma planta com necessidades hídricas relativamente baixas, o abacaxizeiro tem demanda permanente de água, variável ao longo do ciclo e dependente do seu estádio de desenvolvimento. Assim, objetivou-se analisar volumes de irrigação no desenvolvimento vegetativo, no rendimento da fruta e na otimização do abacaxizeiro cv. Pérola. O experimento foi realizado na Universidade Federal de Sergipe, município de São Cristóvão (11°01'S, 37°12'W), no delineamento em blocos ao acaso, com quatro tratamentos (lâminas de água) (100% da evaporação do tanque Classe A (523,7mm ano-1); 75% da evaporação do tanque Classe A (392,8mm ano-1), 50% da evaporação do tanque Classe A (261,8mm ano-1) e 0% da evaporação do tanque Classe A, seis repetições e 12 plantas úteis por parcela. O sistema de irrigação foi por aspersão convencional disposto em linha, com pressão de 20mca e vazão de 1,33m3 h-1. A área foliar (cm2) mínima atingida de 4552,6cm2 foi observada no volume de água de 122,9mm ano-1, enquanto a massa seca das folhas (147,6g) foi constatada com 17mm ano-1. O máximo comprimento da folha D (88,9cm) foi estimado com 532,7 mm ano-1. Já o máximo comprimento do fruto (23cm) foi observado na lâmina de 296,9mm ano-1. A massa do fruto máxima estimado de 1.736g foi constatado na lâmina de 356,4mm ano-1. No contexto, a irrigação contribui de forma positiva no desenvolvimento vegetativo e rendimento da fruta do abacaxizeiro. Ressalta-se remuneração mensal líquida de R 1.161,17ha-1, quando se adota lâmina de irrigação de 356,4mm ano-1. _________________________________________________________________________________________ ABSTRACT: Regardless a relatively low water needs, pineapple fruit has a variable behavior related to water need throughout its biological cycle depending on the development stage. The objective of this work was to analyze irrigation on the vegetative development and fruits yield in pineapple cv. Pérola. The experiment was conducted at the Universidade Federal de Sergipe Experimental Station, at São Cristóvão - SE (11°01'S, 37°12'W), in a randomized block design, with four water level treatments as follow: 100% of Class-A (523.7mm ano-1) evaporation pan; 75% of Class-A (392.8mm ano-1) evaporation pan, 50% of Class-A (261.8mm ano-1) evaporation pan and 0% of Class-A evaporation pan, in six replications and twelve plants per plot. The splinkler watering system of irrigation was installed in a line, with an operating pression of 20 mca and a sprinkler dischrage of 1.33m3h-1. A minimum leaf area of 4552.6cm2 was observed, considering a water level of 122.9mm year-1, while a leaf dry matter was 147.6 g in 17mmyear-1. The maximum leaf length (D) of 88.9cm was estimated considering 532.7mmyear-1. The maximum fruit length of 23cm was observed, considering a water level of 296.9mmyear-1. The maximum estimated fruit weight was 1.736g in a water level of 356.4mm year-1. The irrigation seems to contribute in a positive way to the vegetative development in the pineapple fruit yield. It is important to mention that it could be observed a net profit of R 1,161.17 ha-1, when a water level of 356.4mm ano-1 of irrigation was adopted

    An ecological future for weed science to sustain crop production and the environment. A review

    Get PDF
    Sustainable strategies for managing weeds are critical to meeting agriculture's potential to feed the world's population while conserving the ecosystems and biodiversity on which we depend. The dominant paradigm of weed management in developed countries is currently founded on the two principal tools of herbicides and tillage to remove weeds. However, evidence of negative environmental impacts from both tools is growing, and herbicide resistance is increasingly prevalent. These challenges emerge from a lack of attention to how weeds interact with and are regulated by the agroecosystem as a whole. Novel technological tools proposed for weed control, such as new herbicides, gene editing, and seed destructors, do not address these systemic challenges and thus are unlikely to provide truly sustainable solutions. Combining multiple tools and techniques in an Integrated Weed Management strategy is a step forward, but many integrated strategies still remain overly reliant on too few tools. In contrast, advances in weed ecology are revealing a wealth of options to manage weedsat the agroecosystem levelthat, rather than aiming to eradicate weeds, act to regulate populations to limit their negative impacts while conserving diversity. Here, we review the current state of knowledge in weed ecology and identify how this can be translated into practical weed management. The major points are the following: (1) the diversity and type of crops, management actions and limiting resources can be manipulated to limit weed competitiveness while promoting weed diversity; (2) in contrast to technological tools, ecological approaches to weed management tend to be synergistic with other agroecosystem functions; and (3) there are many existing practices compatible with this approach that could be integrated into current systems, alongside new options to explore. Overall, this review demonstrates that integrating systems-level ecological thinking into agronomic decision-making offers the best route to achieving sustainable weed management
    corecore