469 research outputs found
Predicting High Risk for Human Hantavirus Infections, Sweden
An increased risk for hemorrhagic fever with renal syndrome caused by Puumala hantavirus was forecast for Sweden in 2007. The forecast was based on a predicted increase in the number of Myodes glareolus rodents (reservoir hosts). Despite raised awareness and preparedness, the number of human cases during July 2007–June 2008 was 1,483, a new high
Limits on surface gravities of Kepler planet-candidate host stars from non-detection of solar-like oscillations
We present a novel method for estimating lower-limit surface gravities log g
of Kepler targets whose data do not allow the detection of solar-like
oscillations. The method is tested using an ensemble of solar-type stars
observed in the context of the Kepler Asteroseismic Science Consortium. We then
proceed to estimate lower-limit log g for a cohort of Kepler solar-type
planet-candidate host stars with no detected oscillations. Limits on
fundamental stellar properties, as provided by this work, are likely to be
useful in the characterization of the corresponding candidate planetary
systems. Furthermore, an important byproduct of the current work is the
confirmation that amplitudes of solar-like oscillations are suppressed in stars
with increased levels of surface magnetic activity.Comment: Accepted for publication in ApJ; 35 pages, 10 figures, 5 table
Recommended from our members
Viscoelastic properties of healthy human artery measured in saline solution by AFM based indentation technique
Using an Atomic Force Microscope with an attachment for indentation, we have measured local, in vitro mechanical properties of healthy femoral artery tissue held in saline solution. The elastic modulus (34. 3 kPa) and viscoelastic response ({tau}sub{epsilon} {equals} 16.9 s and {tau}sub{sigma} {equals} 29.3 s) of the unstretched,intimal vessel wall have been determined using Sneddon theory and a three element model(standard linear solid) for viscoelastic materials. The procedures necessary to employ the indenting attachment to detect elastic moduli in the kPa range in liquid are described
Multi-laboratory evaluation of ReaScan TBE IgM rapid test, 2016 to 2017
Tick-borne encephalitis (TBE) is a potentially severe neurological disease caused by TBE virus (TBEV). In Europe and Asia, TBEV infection has become a growing public health concern and requires fast and specific detection. Aim: In this observational study, we evaluated a rapid TBE IgM test, ReaScan TBE, for usage in a clinical laboratory setting. Methods: Patient sera found negative or positive for TBEV by serological and/or molecular methods in diagnostic laboratories of five European countries endemic for TBEV (Estonia, Finland, Slovenia, the Netherlands and Sweden) were used to assess the sensitivity and specificity of the test. The patients' diagnoses were based on other commercial or quality assured in-house assays, i.e. each laboratory's conventional routine methods. For specificity analysis, serum samples from patients with infections known to cause problems in serology were employed. These samples tested positive for e.g. Epstein-Barr virus, cytomegalovirus and Anaplasma phagocytophilum, or for flaviviruses other than TBEV, i.e. dengue, Japanese encephalitis, West Nile and Zika viruses. Samples from individuals vaccinated against flaviviruses other than TBEV were also included. Altogether, 172 serum samples from patients with acute TBE and 306 TBE IgM negative samples were analysed. Results: Compared with each laboratory's conventional methods, the tested assay had similar sensitivity and specificity (99.4% and 97.7%, respectively). Samples containing potentially interfering antibodies did not cause specificity problems. Conclusion: Regarding diagnosis of acute TBEV infections, ReaScan TBE offers rapid and convenient complementary IgM detection. If used as a stand-alone, it can provide preliminary results in a laboratory or point of care setting.Peer reviewe
Ages and fundamental properties of Kepler exoplanet host stars from asteroseismology
We present a study of 33 {\it Kepler} planet-candidate host stars for which
asteroseismic observations have sufficiently high signal-to-noise ratio to
allow extraction of individual pulsation frequencies. We implement a new
Bayesian scheme that is flexible in its input to process individual oscillation
frequencies, combinations of them, and average asteroseismic parameters, and
derive robust fundamental properties for these targets. Applying this scheme to
grids of evolutionary models yields stellar properties with median statistical
uncertainties of 1.2\% (radius), 1.7\% (density), 3.3\% (mass), 4.4\%
(distance), and 14\% (age), making this the exoplanet host-star sample with the
most precise and uniformly determined fundamental parameters to date. We assess
the systematics from changes in the solar abundances and mixing-length
parameter, showing that they are smaller than the statistical errors. We also
determine the stellar properties with three other fitting algorithms and
explore the systematics arising from using different evolution and pulsation
codes, resulting in 1\% in density and radius, and 2\% and 7\% in mass and age,
respectively. We confirm previous findings of the initial helium abundance
being a source of systematics comparable to our statistical uncertainties, and
discuss future prospects for constraining this parameter by combining
asteroseismology and data from space missions. Finally we compare our derived
properties with those obtained using the global average asteroseismic
observables along with effective temperature and metallicity, finding an
excellent level of agreement. Owing to selection effects, our results show that
the majority of the high signal-to-noise ratio asteroseismic {\it Kepler} host
stars are older than the Sun.Comment: 25 pages, 17 figures, MNRAS accepte
Anti-SARS-CoV2 antibody responses in serum and cerebrospinal fluid of COVID-19 patients with neurological symptoms
Antibody responses to SARS-CoV-2 in serum and CSF from 16 COVID-19 patients with neurological symptoms were assessed using two independent methods. IgG specific for the virus spike protein was found in 81% of cases in serum and in 56% in CSF. SARS-CoV-2 IgG in CSF was observed in two cases with negative serology. Levels of IgG in both serum and CSF were associated with disease severity (p<0.05). All patients with elevated markers of CNS damage in CSF also had CSF antibodies (p=0.002), and CSF antibodies had the highest predictive value for neuronal damage markers of all tested clinical variables
Kepler-68: Three Planets, One With a Density Between That of Earth and Ice Giants
NASA's Kepler Mission has revealed two transiting planets orbiting Kepler-68.
Follow-up Doppler measurements have established the mass of the innermost
planet and revealed a third jovian-mass planet orbiting beyond the two
transiting planets. Kepler-68b, in a 5.4 day orbit has mass 8.3 +/- 2.3 Earth,
radius 2.31 +/- 0.07 Earth radii, and a density of 3.32 +/- 0.92 (cgs), giving
Kepler-68b a density intermediate between that of the ice giants and Earth.
Kepler-68c is Earth-sized with a radius of 0.953 Earth and transits on a 9.6
day orbit; validation of Kepler-68c posed unique challenges. Kepler-68d has an
orbital period of 580 +/- 15 days and minimum mass of Msin(i) = 0.947 Jupiter.
Power spectra of the Kepler photometry at 1-minute cadence exhibit a rich and
strong set of asteroseismic pulsation modes enabling detailed analysis of the
stellar interior. Spectroscopy of the star coupled with asteroseismic modeling
of the multiple pulsation modes yield precise measurements of stellar
properties, notably Teff = 5793 +/- 74 K, M = 1.079 +/- 0.051 Msun, R = 1.243
+/- 0.019 Rsun, and density 0.7903 +/- 0.0054 (cgs), all measured with
fractional uncertainties of only a few percent. Models of Kepler-68b suggest it
is likely composed of rock and water, or has a H and He envelope to yield its
density of about 3 (cgs).Comment: 32 pages, 13 figures, Accepted to Ap
Autonomous UAS-Based Agriculture Applications: General Overview and Relevant European Case Studies
Emerging precision agriculture techniques rely on the frequent collection of high-quality data which can be acquired efficiently by unmanned aerial systems (UAS). The main obstacle for wider adoption of this technology is related to UAS operational costs. The path forward requires a high degree of autonomy and integration of the UAS and other cyber physical systems on the farm into a common Farm Management System (FMS) to facilitate the use of big data and artificial intelligence (AI) techniques for decision support. Such a solution has been implemented in the EU project AFarCloud (Aggregated Farming in the Cloud). The regulation of UAS operations is another important factor that impacts the adoption rate of agricultural UAS. An analysis of the new European UAS regulations relevant for autonomous operation is included. Autonomous UAS operation through the AFarCloud FMS solution has been demonstrated at several test farms in multiple European countries. Novel applications have been developed, such as the retrieval of data from remote field sensors using UAS and in situ measurements using dedicated UAS payloads designed for physical contact with the environment. The main findings include that (1) autonomous UAS operation in the agricultural sector is feasible once the regulations allow this; (2) the UAS should be integrated with the FMS and include autonomous data processing and charging functionality to offer a practical solution; and (3) several applications beyond just asset monitoring are relevant for the UAS and will help to justify the cost of this equipment.publishedVersio
Kepler-432: a red giant interacting with one of its two long period giant planets
We report the discovery of Kepler-432b, a giant planet ()
transiting an evolved star with an orbital period of days. Radial velocities (RVs) reveal that
Kepler-432b orbits its parent star with an eccentricity of , which we also measure independently with
asterodensity profiling (AP; ), thereby confirming
the validity of AP on this particular evolved star. The well-determined
planetary properties and unusually large mass also make this planet an
important benchmark for theoretical models of super-Jupiter formation.
Long-term RV monitoring detected the presence of a non-transiting outer planet
(Kepler-432c; days), and adaptive optics imaging revealed a nearby
(0\farcs87), faint companion (Kepler-432B) that is a physically bound M dwarf.
The host star exhibits high signal-to-noise asteroseismic oscillations, which
enable precise measurements of the stellar mass, radius and age. Analysis of
the rotational splitting of the oscillation modes additionally reveals the
stellar spin axis to be nearly edge-on, which suggests that the stellar spin is
likely well-aligned with the orbit of the transiting planet. Despite its long
period, the obliquity of the 52.5-day orbit may have been shaped by star-planet
interaction in a manner similar to hot Jupiter systems, and we present
observational and theoretical evidence to support this scenario. Finally, as a
short-period outlier among giant planets orbiting giant stars, study of
Kepler-432b may help explain the distribution of massive planets orbiting giant
stars interior to 1 AU.Comment: 22 pages, 19 figures, 5 tables. Accepted to ApJ on Jan 24, 2015
(submitted Nov 11, 2014). Updated with minor changes to match published
versio
γ-Secretase modulators show selectivity for γ-secretase–mediated amyloid precursor protein intramembrane processing
The aggregation of β-amyloid peptide 42 results in the formation of toxic oligomers and plaques, which plays a pivotal role in Alzheimer's disease pathogenesis. Aβ42 is one of several Aβ peptides, all of Aβ30 to Aβ43 that are produced as a result of γ-secretase–mediated regulated intramembrane proteolysis of the amyloid precursor protein. γ-Secretase modulators (GSMs) represent a promising class of Aβ42-lowering anti-amyloidogenic compounds for the treatment of AD. Gamma-secretase modulators change the relative proportion of secreted Aβ peptides, while sparing the γ-secretase–mediated processing event resulting in the release of the cytoplasmic APP intracellular domain. In this study, we have characterized how GSMs affect the γ-secretase cleavage of three γ-secretase substrates, E-cadherin, ephrin type A receptor 4 (EphA4) and ephrin type B receptor 2 (EphB2), which all are implicated in important contexts of cell signalling. By using a reporter gene assay, we demonstrate that the γ-secretase–dependent generation of EphA4 and EphB2 intracellular domains is unaffected by GSMs. We also show that γ-secretase processing of EphA4 and EphB2 results in the release of several Aβ-like peptides, but that only the production of Aβ-like proteins from EphA4 is modulated by GSMs, but with an order of magnitude lower potency as compared to Aβ modulation. Collectively, these results suggest that GSMs are selective for γ-secretase–mediated Aβ production
- …