139 research outputs found

    Spectral Analysis of Certain Schr\"odinger Operators

    Get PDF
    The JJ-matrix method is extended to difference and qq-difference operators and is applied to several explicit differential, difference, qq-difference and second order Askey-Wilson type operators. The spectrum and the spectral measures are discussed in each case and the corresponding eigenfunction expansion is written down explicitly in most cases. In some cases we encounter new orthogonal polynomials with explicit three term recurrence relations where nothing is known about their explicit representations or orthogonality measures. Each model we analyze is a discrete quantum mechanical model in the sense of Odake and Sasaki [J. Phys. A: Math. Theor. 44 (2011), 353001, 47 pages]

    Generalized Burchnall-Type Identities for Orthogonal Polynomials and Expansions

    Get PDF
    Burchnall's method to invert the Feldheim-Watson linearization formula for the Hermite polynomials is extended to all polynomial families in the Askey-scheme and its qq-analogue. The resulting expansion formulas are made explicit for several families corresponding to measures with infinite support, including the Wilson and Askey-Wilson polynomials. An integrated version gives the possibility to give alternate expression for orthogonal polynomials with respect to a modified weight. This gives expansions for polynomials, such as Hermite, Laguerre, Meixner, Charlier, Meixner-Pollaczek and big qq-Jacobi polynomials and big qq-Laguerre polynomials. We show that one can find expansions for the orthogonal polynomials corresponding to the Toda-modification of the weight for the classical polynomials that correspond to known explicit solutions for the Toda lattice, i.e., for Hermite, Laguerre, Charlier, Meixner, Meixner-Pollaczek and Krawtchouk polynomials

    Meixner polynomials of the second kind and quantum algebras representing su(1,1)

    Full text link
    We show how Viennot's combinatorial theory of orthogonal polynomials may be used to generalize some recent results of Sukumar and Hodges on the matrix entries in powers of certain operators in a representation of su(1,1). Our results link these calculations to finding the moments and inverse polynomial coefficients of certain Laguerre polynomials and Meixner polynomials of the second kind. As an immediate consequence of results by Koelink, Groenevelt and Van Der Jeugt, for the related operators, substitutions into essentially the same Laguerre polynomials and Meixner polynomials of the second kind may be used to express their eigenvectors. Our combinatorial approach explains and generalizes this "coincidence".Comment: several correction

    Wilson function transforms related to Racah coefficients

    Full text link
    The irreducible *-representations of the Lie algebra su(1,1)su(1,1) consist of discrete series representations, principal unitary series and complementary series. We calculate Racah coefficients for tensor product representations that consist of at least two discrete series representations. We use the explicit expressions for the Clebsch-Gordan coefficients as hypergeometric functions to find explicit expressions for the Racah coefficients. The Racah coefficients are Wilson polynomials and Wilson functions. This leads to natural interpretations of the Wilson function transforms. As an application several sum and integral identities are obtained involving Wilson polynomials and Wilson functions. We also compute Racah coefficients for U_q(\su(1,1)), which turn out to be Askey-Wilson functions and Askey-Wilson polynomials.Comment: 48 page

    Spectral decomposition and matrix-valued orthogonal polynomials

    Get PDF
    The relation between the spectral decomposition of a self-adjoint operator which is realizable as a higher order recurrence operator and matrix-valued orthogonal polynomials is investigated. A general construction of such operators from scalar-valued orthogonal polynomials is presented. Two examples of matrix-valued orthogonal polynomials with explicit orthogonality relations and three-term recurrence relation are presented, which both can be considered as 2×22\times 2-matrix-valued analogues of subfamilies of Askey-Wilson polynomials.Comment: 15 page

    Properties of generalized univariate hypergeometric functions

    Get PDF
    Based on Spiridonov's analysis of elliptic generalizations of the Gauss hypergeometric function, we develop a common framework for 7-parameter families of generalized elliptic, hyperbolic and trigonometric univariate hypergeometric functions. In each case we derive the symmetries of the generalized hypergeometric function under the Weyl group of type E_7 (elliptic, hyperbolic) and of type E_6 (trigonometric) using the appropriate versions of the Nassrallah-Rahman beta integral, and we derive contiguous relations using fundamental addition formulas for theta and sine functions. The top level degenerations of the hyperbolic and trigonometric hypergeometric functions are identified with Ruijsenaars' relativistic hypergeometric function and the Askey-Wilson function, respectively. We show that the degeneration process yields various new and known identities for hyperbolic and trigonometric special functions. We also describe an intimate connection between the hyperbolic and trigonometric theory, which yields an expression of the hyperbolic hypergeometric function as an explicit bilinear sum in trigonometric hypergeometric functions.Comment: 46 page

    The oscillator model for the Lie superalgebra sh(2|2) and Charlier polynomials

    Get PDF
    We investigate an algebraic model for the quantum oscillator based upon the Lie superalgebra sh(2|2), known as the Heisenberg-Weyl superalgebra or "the algebra of supersymmetric quantum mechanics", and its Fock representation. The model offers some freedom in the choice of a position and a momentum operator, leading to a free model parameter gamma. Using the technique of Jacobi matrices, we determine the spectrum of the position operator, and show that its wavefunctions are related to Charlier polynomials C_n with parameter gamma^2. Some properties of these wavefunctions are discussed, as well as some other properties of the current oscillator model.Comment: Minor changes and some additional references added in version

    A solution to the Al-Salam--Chihara moment problem

    Full text link
    We study the qq-hypergeometric difference operator LL on a particular Hilbert space. In this setting LL can be considered as an extension of the Jacobi operator for q1q^{-1}-Al-Salam--Chihara polynomials. Spectral analysis leads to unitarity and an explicit inverse of a qq-analog of the Jacobi function transform. As a consequence a solution of the Al-Salam--Chihara indeterminate moment problem is obtained.Comment: 22 page

    Spectral properties of operators using tridiagonalisation

    Get PDF
    A general scheme for tridiagonalising differential, difference or q-difference operators using orthogonal polynomials is described. From the tridiagonal form the spectral decomposition can be described in terms of the orthogonality measure of generally different orthogonal polynomials. Three examples are worked out: (1) related to Jacobi and Wilson polynomials for a second order differential operator, (2) related to little q-Jacobi polynomials and Askey-Wilson polynomials for a bounded second order q-difference operator, (3) related to little q-Jacobi polynomials for an unbounded second order q-difference operator. In case (1) a link with the Jacobi function transform is established, for which we give a q-analogue using example (2).Comment: 14 pages, corrections, to appear in Analysis and Application

    On a correspondence between quantum SU(2), quantum E(2) and extended quantum SU(1,1)

    Full text link
    In a previous paper, we showed how one can obtain from the action of a locally compact quantum group on a type I-factor a possibly new locally compact quantum group. In another paper, we applied this construction method to the action of quantum SU(2) on the standard Podles sphere to obtain Woronowicz' quantum E(2). In this paper, we will apply this technique to the action of quantum SU(2) on the quantum projective plane (whose associated von Neumann algebra is indeed a type I-factor). The locally compact quantum group which then comes out at the other side turns out to be the extended SU(1,1) quantum group, as constructed by Koelink and Kustermans. We also show that there exists a (non-trivial) quantum groupoid which has at its corners (the duals of) the three quantum groups mentioned above.Comment: 35 page
    corecore