Burchnall's method to invert the Feldheim-Watson linearization formula for
the Hermite polynomials is extended to all polynomial families in the
Askey-scheme and its q-analogue. The resulting expansion formulas are made
explicit for several families corresponding to measures with infinite support,
including the Wilson and Askey-Wilson polynomials. An integrated version gives
the possibility to give alternate expression for orthogonal polynomials with
respect to a modified weight. This gives expansions for polynomials, such as
Hermite, Laguerre, Meixner, Charlier, Meixner-Pollaczek and big q-Jacobi
polynomials and big q-Laguerre polynomials. We show that one can find
expansions for the orthogonal polynomials corresponding to the
Toda-modification of the weight for the classical polynomials that correspond
to known explicit solutions for the Toda lattice, i.e., for Hermite, Laguerre,
Charlier, Meixner, Meixner-Pollaczek and Krawtchouk polynomials