102 research outputs found
Ideas and perspectives: Alleviation of functional limitations by soil organisms is key to climate feedbacks from arctic soils
Arctic soils play an important role in Earth's climate system, as they store large amounts of carbon that, if released, could strongly increase
greenhouse gas levels in our atmosphere. Most research to date has focused on how the turnover of organic matter in these soils is regulated by
abiotic factors, and few studies have considered the potential role of biotic regulation. However, arctic soils are currently missing important
groups of soil organisms, and here, we highlight recent empirical evidence that soil organisms' presence or absence is key to understanding and
predicting future climate feedbacks from arctic soils. We propose that the arrival of soil organisms into arctic soils may introduce “novel
functions”, resulting in increased rates of, for example, nitrification, methanogenesis, litter fragmentation, or bioturbation, and thereby alleviate
functional limitations of the current community. This alleviation can greatly enhance decomposition rates, in parity with effects predicted due to
increasing temperatures. We base this argument on a series of emerging experimental evidence suggesting that the dispersal of until-then absent
micro-, meso-, and macroorganisms (i.e. from bacteria to earthworms) into new regions and newly thawed soil layers can drastically affect soil
functioning. These new observations make us question the current view that neglects organism-driven “alleviation effects” when predicting future
feedbacks between arctic ecosystems and our planet's climate. We therefore advocate for an updated framework in which soil biota and the functions
by which they influence ecosystem processes become essential when predicting the fate of soil functions in warming arctic ecosystems.</p
Resistance of subarctic soil fungal and invertebrate communities to disruption of below‐ground carbon supply
The supply of recent photosynthate from plants to soils is thought to be a critical mechanism regulating the activity and diversity of soil biota. In the Arctic, large-scale vegetation transitions are underway in response to warming, and there is an urgent need to understand how these changes affect soil biodiversity and function. We investigated how abundance and diversity of soil fungi and invertebrates responded to a reduction in fresh below-ground photosynthate supply in treeline birch and willow, achieved using stem girdling. We hypothesised that birch forest would support greater abundance of ectomycorrhizal (ECM) fungal species and fauna than willow shrubs, and that girdling would result in a rapid switch from ECM fungi to saprotrophs as canopy supply of C was cut, with a concomitant decline in soil fauna. Birch forest had greater fungal and faunal abundance with a large contribution of root-associated ascomycetes (ericoid mycorrhizal fungi and root endophytes) compared to willow shrub plots, which had a higher proportion of saprotrophs and, contrary to our expectations, ECM fungi. Broad-scale soil fungal and faunal functional group composition was not significantly changed by girdling, even in the third year of treatment. Within the ECM community, there were some changes, with genera that are believed to be particularly C-demanding declining in girdled plots. However, it was notable how most ECM fungi remained present after 3 years of isolation of the below-ground compartment from contemporary photosynthate supply. Synthesis. In a treeline/tundra ecosystem, distinct soil communities existed in contrasting vegetation patches within the landscape, but the structure of these communities was resistant to canopy disturbance and concomitant reduction of autotrophic C inputs
Epigenetic Regulation of Learning and Memory by Drosophila EHMT/G9a
Behavioral phenotyping and genome-wide profiling of the histone modifier EHMT in Drosophila reveals a mechanism through which an epigenetic writer may control cognition
Adult reversal of cognitive phenotypes in neurodevelopmental disorders
Recent findings in mice suggest that it is possible to reverse certain neurodevelopmental disorders in adults. Changes in development, previously thought to be irreparable in adults, were believed to underlie the neurological and psychiatric phenotypes of a range of common mental health problems with a clear developmental component. As a consequence, most researchers have focused their efforts on understanding the molecular and cellular processes that alter development with the hope that early intervention could prevent the emergent pathology. Unexpectedly, several different animal model studies published recently, including animal models of autism, suggest that it may be possible to reverse neurodevelopmental disorders in adults: Addressing the underlying molecular and cellular deficits in adults could in several cases dramatically improve the neurocognitive phenotypes in these animal models. The findings reviewed here provide hope to millions of individuals afflicted with a wide range of neurodevelopmental disorders, including autism, since they suggest that it may be possible to treat or even cure them in adults
Spatially structured environmental filtering of collembolan traits in late successional salt marsh vegetation
Both the environment and the spatial configuration of habitat patches are important factors that shape community composition and affect species diversity patterns. Species have traits that allow them to respond to their environment. Our current knowledge on environment to species traits relationships is limited in spite of its potential importance for understanding community assembly and ecosystem function. The aim of our study was to examine the relative roles of environmental and spatial variables for the small-scale variation in Collembola (springtail) communities in a Dutch salt marsh. We used a trait-based approach in combination with spatial statistics and variance partitioning, between environmental and spatial variables, to examine the important ecological factors that drive community composition. Turnover of trait diversity across space was lower than for species diversity. Most of the variation in community composition was explained by small-scale spatial variation in topography, on a scale of 4-6 m, most likely because it determines the effect of inundation, which restricts where habitat generalists can persist. There were only small pure spatial effects on species and trait diversity, indicating that biotic interactions or dispersal limitation probably were less important for structuring the community at this scale. Our results suggest that for springtails, life form (i.e. whether they live in the soil or litter or on the surface/in vegetation) is an important and useful trait to understand community assembly. Hence, using traits in addition to species identity when analysing environment-organism relationships results in a better understanding of the factors affecting community composition
Global fine-resolution data on springtail abundance and community structure
Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.</p
Randomised controlled trial of simvastatin treatment for autism in young children with neurofibromatosis type 1 (SANTA)
Background: Neurofibromatosis 1 (NF1) is a monogenic model for syndromic autism. Statins rescue the social and cognitive phenotype in animal knockout models, but translational trials with subjects > 8 years using cognition/ behaviour outcomes have shown mixed results. This trial breaks new ground by studying statin effects for the first time in younger children with NF1 and co-morbid autism and by using multiparametric imaging outcomes. Methods: A single-site triple-blind RCT of simvastatin vs. placebo was done. Assessment (baseline and 12-week endpoint) included peripheral MAPK assay, awake magnetic resonance imaging spectroscopy (MRS; GABA and glutamate+glutamine (Glx)), arterial spin labelling (ASL), apparent diffusion coefficient (ADC), resting state functional MRI, and autism behavioural outcomes (Aberrant Behaviour Checklist and Clinical Global Impression). Results: Thirty subjects had a mean age of 8.1 years (SD 1.8). Simvastatin was well tolerated. The amount of imaging data varied by test. Simvastatin treatment was associated with (i) increased frontal white matter MRS GABA (t(12) = − 2.12, p = .055), GABA/Glx ratio (t(12) = − 2.78, p = .016), and reduced grey nuclei Glx (ANCOVA p < 0.05, Mann-Whitney p < 0.01); (ii) increased ASL perfusion in ventral diencephalon (Mann-Whitney p < 0.01); and (iii) decreased ADC in cingulate gyrus (Mann-Whitney p < 0.01). Machine-learning classification of imaging outcomes achieved 79% (p < .05) accuracy differentiating groups at endpoint against chance level (64%, p = 0.25) at baseline. Three of 12 (25%) simvastatin cases compared to none in placebo met ‘clinical responder’ criteria for behavioural outcome. Conclusions: We show feasibility of peripheral MAPK assay and autism symptom measurement, but the study was not powered to test effectiveness. Multiparametric imaging suggests possible simvastatin effects in brain areas previously associated with NF1 pathophysiology and the social brain network
Global fine-resolution data on springtail abundance and community structure
CODE AVAILABILITY : Programming R code is openly available together with the database from Figshare.SUPPLEMENTARY MATERIAL 1 : Template for data collectionSUPPLEMENTARY MATERIAL 2 : Data Descriptor WorksheetSpringtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.Open Access funding enabled and organized by Projekt DEAL.http://www.nature.com/sdatahj2024Plant Production and Soil ScienceSDG-15:Life on lan
- …