511 research outputs found

    Impedance Analysis of Complex Formation Equilibria in Phosphatidylcholine Bilayers Containing Decanoic Acid or Decylamine

    Get PDF
    Bilayer lipid membranes composed of phosphatidylcholine and decanoic acid or phosphatidylcholine and decylamine were investigated using electrochemical impedance spectroscopy. Interaction between membrane components causes significant deviations from the additivity rule. Area, capacitance, and stability constant values for the complexes were calculated based on the model assuming 1:1 stoichiometry, and the model was validated by comparison of these values to experimental results. We established that phosphatidylcholine and decylamine form highly stable 1:1 complexes. In the case of decanoic acid-modified phosphatidylcholine membranes, complexes with stoichiometries other than 1:1 should be taken into consideration

    The liver X receptor pathway is highly upregulated in rheumatoid arthritis synovial macrophages and potentiates TLR-driven cytokine release

    Get PDF
    <p>Objectives: Macrophages are central to the inflammatory processes driving rheumatoid arthritis (RA) synovitis. The molecular pathways that are induced in synovial macrophages and thereby promote RA disease pathology remain poorly understood.</p> <p>Methods: We used microarray to characterise the transcriptome of synovial fluid (SF) macrophages compared with matched peripheral blood monocytes from patients with RA (n=8).</p> <p>Results: Using in silico pathway mapping, we found that pathways downstream of the cholesterol activated liver X receptors (LXRs) and those associated with Toll-like receptor (TLR) signalling were upregulated in SF macrophages. Macrophage differentiation and tumour necrosis factor α promoted the expression of LXRα. Furthermore, in functional studies we demonstrated that activation of LXRs significantly augmented TLR-driven cytokine and chemokine secretion.</p> <p>Conclusions: The LXR pathway is the most upregulated pathway in RA synovial macrophages and activation of LXRs by ligands present within SF augments TLR-driven cytokine secretion. Since the natural agonists of LXRs arise from cholesterol metabolism, this provides a novel mechanism that can promote RA synovitis.</p&gt

    Symbol Emergence in Cognitive Developmental Systems: a Survey

    Get PDF
    OAPA Humans use signs, e.g., sentences in a spoken language, for communication and thought. Hence, symbol systems like language are crucial for our communication with other agents and adaptation to our real-world environment. The symbol systems we use in our human society adaptively and dynamically change over time. In the context of artificial intelligence (AI) and cognitive systems, the symbol grounding problem has been regarded as one of the central problems related to symbols. However, the symbol grounding problem was originally posed to connect symbolic AI and sensorimotor information and did not consider many interdisciplinary phenomena in human communication and dynamic symbol systems in our society, which semiotics considered. In this paper, we focus on the symbol emergence problem, addressing not only cognitive dynamics but also the dynamics of symbol systems in society, rather than the symbol grounding problem. We first introduce the notion of a symbol in semiotics from the humanities, to leave the very narrow idea of symbols in symbolic AI. Furthermore, over the years, it became more and more clear that symbol emergence has to be regarded as a multifaceted problem. Therefore, secondly, we review the history of the symbol emergence problem in different fields, including both biological and artificial systems, showing their mutual relations. We summarize the discussion and provide an integrative viewpoint and comprehensive overview of symbol emergence in cognitive systems. Additionally, we describe the challenges facing the creation of cognitive systems that can be part of symbol emergence systems

    Trichothecene Mycotoxins Inhibit Mitochondrial Translation—Implication for the Mechanism of Toxicity

    Get PDF
    Fusarium head blight (FHB) reduces crop yield and results in contamination of grains with trichothecene mycotoxins. We previously showed that mitochondria play a critical role in the toxicity of a type B trichothecene. Here, we investigated the direct effects of type A and type B trichothecenes on mitochondrial translation and membrane integrity in Saccharomyces cerevisiae. Sensitivity to trichothecenes increased when functional mitochondria were required for growth, and trichothecenes inhibited mitochondrial translation at concentrations, which did not inhibit total translation. In organello translation in isolated mitochondria was inhibited by type A and B trichothecenes, demonstrating that these toxins have a direct effect on mitochondrial translation. In intact yeast cells trichothecenes showed dose-dependent inhibition of mitochondrial membrane potential and reactive oxygen species, but only at doses higher than those affecting mitochondrial translation. These results demonstrate that inhibition of mitochondrial translation is a primary target of trichothecenes and is not secondary to the disruption of mitochondrial membranes

    Electronic control of coherence in a two-dimensional array of photonic crystal surface emitting lasers

    Get PDF
    We demonstrate a semiconductor PCSEL array that uniquely combines an in-plane waveguide structure with nano-scale patterned PCSEL elements. This novel geometry allows two-dimensional electronically controllable coherent coupling of remote vertically emitting lasers. Mutual coherence of the PCSEL elements is verified through the demonstration of a two-dimensional Young’s Slits experiment. In addition to allowing the all-electronic control of the interference pattern, this type of device offers new routes to power and brightness scaling in semiconductor lasers, and opportunities for all-electronic beam steering

    First GIS analysis of modern stone tools used by wild chimpanzees (Pan troglodytes verus) in Bossou, Guinea, West Africa

    Get PDF
    Stone tool use by wild chimpanzees of West Africa offers a unique opportunity to explore the evolutionary roots of technology during human evolution. However, detailed analyses of chimpanzee stone artifacts are still lacking, thus precluding a comparison with the earliest archaeological record. This paper presents the first systematic study of stone tools used by wild chimpanzees to crack open nuts in Bossou (Guinea-Conakry), and applies pioneering analytical techniques to such artifacts. Automatic morphometric GIS classification enabled to create maps of use wear over the stone tools (anvils, hammers, and hammers/anvils), which were blind tested with GIS spatial analysis of damage patterns identified visually. Our analysis shows that chimpanzee stone tool use wear can be systematized and specific damage patterns discerned, allowing to discriminate between active and passive pounders in lithic assemblages. In summary, our results demonstrate the heuristic potential of combined suites of GIS techniques for the analysis of battered artifacts, and have enabled creating a referential framework of analysis in which wild chimpanzee battered tools can for the first time be directly compared to the early archaeological record.Leverhulme Trust [IN-052]; MEXT [20002001, 24000001]; JSPS-U04-PWS; FCT-Portugal [SFRH/BD/36169/2007]; Wenner-Gren Foundation for Anthropological Researc

    Fast Field Cycling NMR relaxometry studies of molten and cooled cocoa butter

    Get PDF
    Due to its relevance in the confectionery industry, cocoa butter (CB) has been extensively studied. However, most studies focus on its crystallisation properties, whilst studies of its liquid state are lacking. Here, and for the first time, a study of the self-diffusion of CB at different temperatures is presented, using fast field cycling (FFC) nuclear magnetic resonance (NMR) further validated using pulsed field gradient stimulated echo (PGSTE) NMR. Measurements were performed upon heating CB to either 50 or 100 °C and cooling it to 22 °C. No hysteresis was found between the different thermal treatments. However, the activation energy (28.7 kJ/mol) estimated from the cooling protocol of the 100 °C treatment, was the closest to that reported in literature for similar systems. This suggests that measurements using a wider range of temperatures, and starting with a liquid material are advisable. Additionally, samples were measured during isothermal crystallisation at 22 °C, showing that the region below 1 MHz is the most sensitive to phase change
    corecore