138 research outputs found

    Fitness and fur colouration. Testing the camouflage and thermoregulation hypotheses in an Arctic mammal

    Get PDF
    Selection for crypsis has been recognized as an important ecological driver of animal colouration, whereas the relative importance of thermoregulation is more contentious with mixed empirical support. A potential thermal advantage of darker individuals has been observed in a wide range of animal species. Arctic animals that exhibit colour polymorphisms and undergo seasonal colour moults are interesting study subjects for testing the two alternative hypotheses: demographic performance of different colour morphs might be differentially affected by snow cover with a cryptic advantage for lighter morphs, or conversely by winter temperature with a thermal advantage for darker morphs. In this study, we explored whether camouflage and thermoregulation might explain differences in reproduction and survival between the white and blue colour morphs of the Arctic fox Vulpes lagopus under natural conditions. Juvenile and adult survival, breeding propensity and litter size were measured for 798 captive-bred and released or wild-born Arctic foxes monitored during an 11-year period (2007–2017) in two subpopulations in south-central Norway. We investigated the proportion of the two colour morphs and compared their demographic performance in relation to spatial variation in duration of snow cover, onset of snow season and winter temperatures. After population re-establishment, a higher proportion of blue individuals was observed among wild-born Arctic foxes compared to the proportion of blue foxes released from the captive population. Our field study provides the first evidence for an effect of colour morph on the reproductive performance of Arctic foxes under natural conditions, with a higher breeding propensity of the blue morph compared to the white one. Performance of the two colour morphs was not differentially affected by the climatic variables, except for juvenile survival. Blue morph juveniles showed a tendency for higher survival under colder winter temperatures but lower survival under warmer temperatures compared to white morph juveniles. Overall, our findings do not consistently support predictions of the camouflage or the thermoregulation hypotheses. The higher success of blue foxes suggests an advantage of the dark morph not directly related to disruptive selection by crypsis or thermoregulation. Our results rather point to physiological adaptations and behavioural traits not necessarily connected to thermoregulation, such as stress response, immune function, sexual behaviour and aggressiveness. Our findings highlight the need to explore the potential role of genetic linkage or pleiotropy in influencing the fitness of white and blue Arctic foxes as well as other species with colour polymorphisms

    Expedient synthesis of an atypical oxazolidinone compound library

    Get PDF
    In order to address the current downturn in the drug discovery pipeline, initiatives are being undertaken to synthesise screening libraries of sp3-rich, low molecular weight compounds. As part of the European Lead Factory initiative, the synthesis and derivatisation of a simple hexahydrooxazolo[5,4-c]pyridin-2(1H)-one bicyclic carbamate has been achieved. The synthetic route employed involved a telescoped hetero-Diels-Alder/[2,3]-sigmatropic rearrangement/cyclisation sequence to deliver the desired core scaffold containing two points for further diversification. When applied, this synthesis was found to be robust and scalable which allowed the production of a 155 compound library

    Glucocorticoids induce long-lasting effects in neural stem cells resulting in senescence-related alterations

    Get PDF
    Alterations in intrauterine programming occurring during critical periods of development have adverse consequences for whole-organ systems or individual tissue functions in later life. In this paper, we show that rat embryonic neural stem cells (NSCs) exposed to the synthetic glucocorticoid dexamethasone (Dex) undergo heritable alterations, possibly through epigenetic mechanisms. Exposure to Dex results in decreased NSC proliferation, with no effects on survival or differentiation, and changes in the expression of genes associated with cellular senescence and mitochondrial functions. Dex upregulates cell cycle-related genes p16 and p21 in a glucocorticoid receptor(GR)-dependent manner. The senescence-associated markers high mobility group (Hmg) A1 and heterochromatin protein 1 (HP1) are also upregulated in Dex-exposed NSCs, whereas Bmi1 (polycomb ring finger oncogene) and mitochondrial genes Nd3 (NADH dehydrogenase 3) and Cytb (cytochrome b) are downregulated. The concomitant decrease in global DNA methylation and DNA methyltransferases (Dnmts) suggests the occurrence of epigenetic changes. All these features are retained in daughter NSCs (never directly exposed to Dex) and are associated with a higher susceptibility to oxidative stress, as shown by the increased occurrence of apoptotic cell death on exposure to the redox-cycling reactive oxygen species (ROS) generator 2,3-dimethoxy-1-naphthoquinone (DMNQ). Our study provides novel evidence for programming effects induced by glucocorticoids (GCs) on NSCs and supports the idea that fetal exposure to endogenous or exogenous GCs is likely to result in long-term consequences that may predispose to neurodevelopmental and/or neurodegenerative disorders

    Extensive population genetic structure in the giraffe

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (<it>Giraffa camelopardalis</it>) are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation.</p> <p>Results</p> <p>By analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations.</p> <p>Conclusion</p> <p>Such extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate <it>in situ </it>and <it>ex situ </it>management, not only of pelage morphs, but also of local populations.</p

    Mitochondrial phylogeography of baboons (Papio spp.) – Indication for introgressive hybridization?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Baboons of the genus <it>Papio </it>are distributed over wide ranges of Africa and even colonized parts of the Arabian Peninsula. Traditionally, five phenotypically distinct species are recognized, but recent molecular studies were not able to resolve their phylogenetic relationships. Moreover, these studies revealed para- and polyphyletic (hereafter paraphyletic) mitochondrial clades for baboons from eastern Africa, and it was hypothesized that introgressive hybridization might have contributed substantially to their evolutionary history. To further elucidate the phylogenetic relationships among baboons, we extended earlier studies by analysing the complete mitochondrial cytochrome <it>b </it>gene and the 'Brown region' from 67 specimens collected at 53 sites, which represent all species and which cover most of the baboons' range.</p> <p>Results</p> <p>Based on phylogenetic tree reconstructions seven well supported major haplogroups were detected, which reflect geographic populations and discordance between mitochondrial phylogeny and baboon morphology. Our divergence age estimates indicate an initial separation into southern and northern baboon clades 2.09 (1.54–2.71) million years ago (mya). We found deep divergences between haplogroups within several species (~2 mya, northern and southern yellow baboons, western and eastern olive baboons and northern and southern chacma baboons), but also recent divergence ages among species (< 0.7 mya, yellow, olive and hamadryas baboons in eastern Africa).</p> <p>Conclusion</p> <p>Our study confirms earlier findings for eastern Africa, but shows that baboon species from other parts of the continent are also mitochondrially paraphyletic. The phylogenetic patterns suggest a complex evolutionary history with multiple phases of isolation and reconnection of populations. Most likely all these biogeographic events were triggered by multiple cycles of expansion and retreat of savannah biomes during Pleistocene glacial and inter-glacial periods. During contact phases of populations reticulate events (i.e. introgressive hybridization) were highly likely, similar to ongoing hybridization, which is observed between East African baboon populations. Defining the extent of the introgressive hybridization will require further molecular studies that incorporate additional sampling sites and nuclear loci.</p

    Reversal of childhood idiopathic scoliosis in an adult, without surgery: a case report and literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some patients with mild or moderate thoracic scoliosis (Cobb angle <50-60 degrees) suffer disproportionate impairment of pulmonary function associated with deformities in the sagittal plane and reduced flexibility of the spine and chest cage. Long-term improvement in the clinical signs and symptoms of childhood onset scoliosis in an adult, without surgical intervention, has not been documented previously.</p> <p>Case presentation</p> <p>A diagnosis of thoracic scoliosis (Cobb angle 45 degrees) with pectus excavatum and thoracic hypokyphosis in a female patient (DOB 9/17/52) was made in June 1964. Immediate spinal fusion was strongly recommended, but the patient elected a daily home exercise program taught during a 6-week period of training by a physical therapist. This regime was carried out through 1992, with daily aerobic exercise added in 1974. The Cobb angle of the primary thoracic curvature remained unchanged. Ongoing clinical symptoms included dyspnea at rest and recurrent respiratory infections. A period of multimodal treatment with clinical monitoring and treatment by an osteopathic physician was initiated when the patient was 40 years old. This included deep tissue massage (1992-1996); outpatient psychological therapy (1992-1993); a daily home exercise program focused on mobilization of the chest wall (1992-2005); and manipulative medicine (1994-1995, 1999-2000). Progressive improvement in chest wall excursion, increased thoracic kyphosis, and resolution of long-standing respiratory symptoms occurred concomitant with a >10 degree decrease in Cobb angle magnitude of the primary thoracic curvature.</p> <p>Conclusion</p> <p>This report documents improved chest wall function and resolution of respiratory symptoms in response to nonsurgical approaches in an adult female, diagnosed at age eleven years with idiopathic scoliosis.</p
    • …
    corecore