80 research outputs found
Quasi-periodic oscillations in accreting magnetic white dwarfs: I. Observational constraints in X-ray and optical
International audienceQuasi-periodic oscillations (QPOs) are observed in the optical flux of some polars with typical periods of 1 to 3 s but none have been observed yet in X-rays where a significant part of the accreting energy is released. QPOs are expected and predicted from shock oscillations. Most of the polars have been observed by the XMM-Newton satellite. We made use of the homogeneous set of observations of the polars by XMM-Newton to search for the presence of QPOs in the (0.5–10 keV) energy range and to set significant upper limits for the brightest X-ray polars. We extracted high time-resolution X-ray light curves by taking advantage of the 0.07 s resolution of the EPIC-PN camera. Among the 65 polars observed with XMM-Newton from 1998 to 2012, a sample of 24 sources was selected on the basis of their counting rate in the PN instrument to secure significant limits. We searched for QPOs using Fast Fourier Transform (FFT) methods and defined limits of detection using statistical tools. Among the sample surveyed, none shows QPOs at a significant level. Upper limits to the fractional flux in QPOs range from 7% to 71%. These negative results are compared to the detailed theoretical predictions of numerical simulations based on a 2D hydrodynamical code presented in Paper II. Cooling instabilities in the accretion column are expected to produce shock quasi-oscillations with a maximum amplitude reaching ~40% in the bremsstrahlung (0.5–10 keV) X-ray emission and ~20% in the optical cyclotron emission. The absence of X-ray QPOs imposes an upper limit of ~(5–10) g cm-2 s-1 on the specific accretion rate but this condition is found inconsistent with the value required to account for the amplitudes and frequencies of the observed optical QPOs. This contradiction outlines probable shortcomings with the shock instability model
Quasi-periodic oscillations in accreting magnetic white dwarfs II. The asset of numerical modelling for interpreting observations
Magnetic cataclysmic variables are close binary systems containing a strongly
magnetized white dwarf that accretes matter coming from an M-dwarf companion.
High-energy radiation coming from those objects is emitted from the accretion
column close to the white dwarf photosphere at the impact region. Its
properties depend on the characteristics of the white dwarf and an accurate
accretion column model allows the properties of the binary system to be
inferred, such as the white dwarf mass, its magnetic field, and the accretion
rate. We study the temporal and spectral behaviour of the accretion region and
use the tools we developed to accurately connect the simulation results to the
X-ray and optical astronomical observations. The radiation hydrodynamics code
Hades was adapted to simulate this specific accretion phenomena. Classical
approaches were used to model the radiative losses of the two main radiative
processes: bremsstrahlung and cyclotron. The oscillation frequencies and
amplitudes in the X-ray and optical domains are studied to compare those
numerical results to observational ones. Different dimensional formulae were
developed to complete the numerical evaluations. The complete characterization
of the emitting region is described for the two main radiative regimes: when
only the bremsstrahlung losses and when both cyclotron and bremsstrahlung
losses are considered. The effect of the non-linear cooling in- stability
regime on the accretion column behaviour is analysed. Variation in luminosity
on short timescales (~ 1 s quasi-periodic oscillations) is an expected
consequence of this specific dynamic. The importance of secondary shock
instability on the quasi-periodic oscillation phenomenon is discussed. The
stabilization effect of the cyclotron process is confirmed by our numerical
simulations, as well as the power distribution in the various modes of
oscillation.Comment: 13 pages, 13 figures, 2 tables. Accepted for publication in A&
Link between laboratory and astrophysical radiative shocks
This work provides analytical solutions describing the post-shock structure
of radiative shocks growing in astrophysics and in laboratory. The equations
including a cooling function are solved for any values of the exponents , and
. This modeling is appropriate to astrophysics as the observed
radiative shocks arise in optically thin media. In contrast, in laboratory,
radiative shocks performed using high-power lasers present a radiative
precursor because the plasma is more or less optically thick. We study the
post-shock region in the laboratory case and compare with astrophysical shock
structure. In addition, we attempt to use the same equations to describe the
radiative precursor, but the cooling function is slightly modified. In future
experiments we will probe the PSR using X-ray diagnostics. These new
experimental results will allow to validate our astrophysical numerical codes
Fast quasi-periodic oscillations in the eclipsing polar VV Puppis from VLT and XMM-Newton observations
International audienceWe present high time resolution optical photometric data of the polar VV Puppis obtained simultaneously in three filters (u′, HeII λ4686, r′) with the ULTRACAM camera mounted at the ESO-VLT telescope. An analysis of a long 50 ks XMM-Newton observation of the source, retrieved from the database, is also provided. Quasi-periodic oscillations (QPOs) are clearly detected in the optical during the source bright phase intervals when the accreting pole is visible, confirming the association of the QPOs with the basis of the accretion column. QPOs are detected in the three filters at a mean frequency of ∼0.7 Hz with a similar amplitude ∼1%. Mean orbitally-averaged power spectra during the bright phase show a rather broad excess with a quality factor Q = ν/Δν = 5−7 but smaller data segments commonly show a much higher coherency with Q up to 30. The X-ray Multi-mirror Mission XMM (0.5–10 keV) observation provides the first accurate estimation of the hard X-ray component with a high kT ∼ 40 keV temperature and confirms the high extreme ultraviolet (EUV)-soft/hard ratio in the range of 4−15 for VV Pup. The detailed X-ray orbital light curve displays a short Δϕ ≃ 0.05 ingress into self-eclipse of the active pole, indicative of an accretion shock height of ∼75 km. No significant X-ray QPOs are detected with an amplitude upper limit of ∼30% in the range 0.1–5 Hz. Detailed hydrodynamical numerical simulations of the post-shock accretion region with parameters consistent with VV Pup demonstrate that the expected frequencies from radiative instability are identical for X-rays and optical regime at values ν ∼ 40–70 Hz, more than one order magnitude higher than observed. This confirms previous statements suggesting that present instability models are unable to explain the full QPO characteristics within the parameters commonly known for polars
Counter-propagating radiative shock experiments on the Orion laser and the formation of radiative precursors
We present results from new experiments to study the dynamics of radiative
shocks, reverse shocks and radiative precursors. Laser ablation of a solid
piston by the Orion high-power laser at AWE Aldermaston UK was used to drive
radiative shocks into a gas cell initially pressurised between and $1.0 \
bar with different noble gases. Shocks propagated at {80 \pm 10 \ km/s} and
experienced strong radiative cooling resulting in post-shock compressions of {
\times 25 \pm 2}. A combination of X-ray backlighting, optical self-emission
streak imaging and interferometry (multi-frame and streak imaging) were used to
simultaneously study both the shock front and the radiative precursor. These
experiments present a new configuration to produce counter-propagating
radiative shocks, allowing for the study of reverse shocks and providing a
unique platform for numerical validation. In addition, the radiative shocks
were able to expand freely into a large gas volume without being confined by
the walls of the gas cell. This allows for 3-D effects of the shocks to be
studied which, in principle, could lead to a more direct comparison to
astrophysical phenomena. By maintaining a constant mass density between
different gas fills the shocks evolved with similar hydrodynamics but the
radiative precursor was found to extend significantly further in higher atomic
number gases (\sim4$ times further in xenon than neon). Finally, 1-D and 2-D
radiative-hydrodynamic simulations are presented showing good agreement with
the experimental data.Comment: HEDLA 2016 conference proceeding
A VLT-ULTRACAM study of the fast optical quasi-periodic oscillations in the polar V834 Centauri
Quasi-periodic oscillations (QPOs) of a few seconds have been detected in some polars, the synchronised subclass of cataclysmic systems containing a strongly magnetised white dwarf which accretes matter from a red dwarf companion. The QPOs are thought to be related to instabilities of a shock formed in the accretion column, close to the white dwarf photosphere above the impact region. We present optical observations of the polar V834 Centauri performed with the fast ULTRACAM camera mounted on the ESO-VLT simultaneously in three filters (u′, He ii λ4686, r′) to study these oscillations and characterise their properties along the orbit when the column is seen at different viewing angles. Fast Fourier transforms and wavelet analysis have been performed and the mean frequency, rms amplitude, and coherence of the QPOs are derived; a detailed inspection of individual pulses has also been performed. The observations confirm the probable ubiquity of the QPOs for this source at all epochs when the source is in a high state, with observed mean amplitude of 2.1% (r′), 1.5% (He ii), and 0.6% (u′). The QPOs are present in the r′ filter at all phases of the orbital cycle, with a higher relative amplitude around the maximum of the light curve. They are also detected in the He ii and u′ filters but at a lower level. Trains of oscillations are clearly observed in the r′ light curve and can be mimicked by a superposition of damped sinusoids with various parameters. The QPO energy distribution is comparable to that of the cyclotron flux, consistent for the r′ and He ii filters but requiring a significant dilution in the u′ filter. New 1D hydrodynamical simulations of shock instabilities, adapted to the physical parameters of V834 Cen, can account for the optical QPO amplitude and X-ray upper limit assuming a cross section of the accretion column in the range ~(4 − 5) × 1014 cm2. However, the predicted frequency is larger than the observed one by an order of magnitude. This shortcoming indicates that the QPO generation is more complex than that produced in a homogeneous column and calls for a more realistic 3D treatment of the accretion flow in future modelling
- …