668 research outputs found

    Immunohistochemical evaluation of neuroreceptors in healthy and pathological temporo-mandibular joint

    Get PDF
    Aim: A study was performed on the articular disk and periarticular tissues of the temporo- mandibular joint (TMJ) with immunohistochemical techniques to give evidence to the presence of neuroreceptors (NRec) in these sites. Methods: The study was carried out on tissue samples obtained from 10 subjects without TMJ disease and from 7 patients with severe TMJ arthritis and arthrosis. We use antibodies directed against following antigens: Gliofibrillary Acidic Protein (GFAP), Leu-7, Myelin Basic Protein (MBP), Neurofilaments 68 kD (NF), Neuron Specific Enolase (NSE), S-100 protein (S-100) and Synaptophysin (SYN). Results: This study revealed that Ruffini's-like, Pacini's-like and Golgi's-like receptors can be demonstrated in TMJ periarticular tissues and that free nervous endings are present in the subsynovial tissues but not within the articular disk. We observed elongated cytoplamic processes of chondrocytes that demonstrated strong S-100 immunoreactivity but they were unreactive with all other antibodies. These cytoplamic processes were more abundant and thicker in the samples obtained from patients with disease TMJ. Conclusion: The results of this study confirm that different Nrec are detectable in TMJ periarticular tissues but they are absent within the articular disk. In the latter site, only condrocytic processes are evident, especially in diseased TMJ, and they might have been confused with nervous endings in previous morphological studies. Nevertheless the absence of immunoreactivity for NF, NSE and SYN proves that they are not of neural origin. © Ivyspring International Publisher

    Plasma Modification of PCL Porous Scaffolds Fabricated by Solvent Casting/Particulate Leaching for Tissue Engineering

    Get PDF
    This study points out how the plasma modification of PCL porous scaffolds, produced by Solvent Casting/Particulate Leaching, may enhance their biocompatibility. A C2H4/N2 plasma deposition followed by a H2 plasma treatment was used to increase the hydrophilicity of the whole scaffold to support osteoblast cell proliferation, both outside and inside the scaffold. A better cell growth was obtained on plasma modified scaffolds.JRC.I.4-Nanobioscience

    A Case of Osteonecrosis of the Jaw in a Patient with Crohn's Disease Treated with Infliximab

    Get PDF
    Background: Medication-related osteonecrosis of the jaw (MRONJ) is a severe adverse drug reaction, occurring in patients undergoing treatments with antiresorptive or antiangiogenic agents, such as bisphosphonates, denosumab, or bevacizumab, for different oncologic and non-oncologic diseases. The aim of this study was to report a case of MRONJ in a patient taking infliximab, an anti-TNF-alpha antibody used to treat Crohn's disease, rheumatoid arthritis, ulcerative colitis, ankylosing spondylitis, psoriatic arthritis, and plaque psoriasis. Case Report: A 49-year-old female patient affected by Crohn's disease, who had been undergoing 250 mg intravenous infliximab every six weeks for 12 years, with no history of antiresorptive or antiangiogenic agent administration, came to our attention for post-surgical MRONJ, associated with a wide cutaneous necrotic area of her anterior mandible. Following antibiotic cycles, the patient underwent surgical treatment with wide bone resection and debridement of necrotic tissues; after prolonged follow-up (16 months), the patient completely healed without signs of recurrence. Conclusions: Prevention of MRONJ by dental check-up before and during treatments with antiresorptive treatments (bisphosphonates or denosumab) is a well-established procedure. Although further studies are required to confirm the role of infliximab in MRONJ, based on the results of this study, we propose that patients who are going to be treated with infliximab should also undergo dental check-up before starting therapy, to possibly avoid MRONJ onset

    Isolation of a Wickerhamomyces anomalus yeast strain from the sandfly Phlebotomus perniciosus, displaying the killer phenotype

    No full text
    The yeast Wickerhamomyces anomalus has been studied for its wide biotechnological potential, mainly for applications in the food industry. Different strains of W. anomalus have been isolated from diverse habitats and recently from insects, including mosquitoes of medical importance. This paper reports the isolation and phylogenetic characterization of W. anomalus from laboratory-reared adults and larvae of Phlebotomus perniciosus (Diptera: Psychodidae), a main phlebotomine vector of human and canine leishmaniasis. Of 65 yeast strains isolated from P. perniciosus, 15 strains were identified as W. anomalus; one of these was tested for the killer phenotype and demonstrated inhibitory activity against four yeast sensitive strains, as reported for mosquito-isolated strains. The association between P. perniciosus and W. anomalus deserves further investigation in order to explore the possibility that this yeast may exert inhibitory/killing activity against Leishmania spp

    Fibrolipoma gigante de la mejilla: a propósito de un caso

    Get PDF
    El fibrolipoma es una neoplasia de origen mesenquimal, rara en la cavidad oral, representando el 1% de todos los tumores benignos orales. Es una variante histológica del lipoma simple, que normalmente se manifiesta a nivel de la mucosa oral, suelo de la boca, lengua y labios. La etiología suele ser traumática cuando afecta localizaciones extraorales, mientras se considera idiopática al manifestarse a nivel bucal. En este artículo se presenta un raro caso de fibrolipoma de mejilla, y se discuten los aspectos diagnósticos, histo-patológicos y de tratamiento de acuerdo a la literatura. Lipomas are common soft tissue mesenchymal neoplasms, rare in the oral cavity, representing 1% of all benign oral tumors. Fibrolipoma is a histological variant of the classic lipoma which normally affects buccal mucosa, floor of the mouth, tongue and lips. In this article is presented a rare case of fibrolipoma of the cheek and are discussed all the aspects of diagnosis, histology and surgical treatment, according to literature data

    A rapid qPCR method to investigate the circulation of the yeast Wickerhamomyces anomalus in humans

    Get PDF
    The yeast Wickerhamomyces anomalus has been proposed for many biotechnological applications in the food industry. However, a number of opportunistic pathogenic strains have been reported as causative agents of nosocomial fungemia. Recognition of potentially pathogenic isolates is an important challenge for the future commercialization of this yeast. The isolation of W. anomalus from different matrices and, recently, from mosquitoes, requires further investigations into its circulation in humans. Here we present a qPCR protocol for the detection of W. anomalus in human blood samples and the results of a screening of 525 donors, including different classes of patients and healthy people

    Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically-distant genera and orders

    Get PDF
    Bacterial symbionts of insects have been proposed for blocking transmission of vector-borne pathogens. However, in many vector models the ecology of symbionts and their capability of cross-colonizing different hosts, an important feature in the symbiotic control approach, is poorly known. Here we show that the acetic acid bacterium Asaia, previously found in the malaria mosquito vector Anopheles stephensi, is also present in and capable of cross-colonizing other sugar-feeding insects of phylogenetically distant genera and orders. PCR, real-time PCR and in situ-hybridization experiments showed Asaia in the body of the mosquito Aedes aegypti and the leafhopper Scaphoideus titanus, vectors of human viruses and a grapevine phytoplasma, respectively. Cross colonization patterns of the body of Ae. aegypti, An. stephensi and S. titanus have been documented with Asaia strains isolated from An. stephensi or Ae. aegypti, and labelled with plasmid- or chromosome-encoded fluorescent proteins (Gfp and DsRed, respectively). Fluorescence and confocal microscopy showed that Asaia, administered with the sugar meal, efficiently colonized guts, male and female reproductive systems and the salivary glands. The ability in cross-colonizing insects of phylogenetically distant orders indicates that Asaia adopts body invasion mechanisms independent from the host biological characteristics. This versatility is an important property for the development of symbiont-based therapies of different vector-borne diseases

    Anopheline mosquito saliva contains bacteria that are transferred to a mammalian host through blood feeding

    Get PDF
    Introduction: Malaria transmission occurs when Plasmodium sporozoites are transferred from the salivary glands of anopheline mosquitoes to a human host through the injection of saliva. The need for better understanding, as well as novel modes of inhibiting, this key event in transmission has driven intense study of the protein and miRNA content of saliva. Until now the possibility that mosquito saliva may also contain bacteria has remained an open question despite the well documented presence of a rich microbiome in salivary glands. MethodsUsing both 16S rRNA sequencing and MALDI-TOF approaches, we characterized the composition of the saliva microbiome of An. gambiae and An. stephensi mosquitoes which respectively represent two of the most important vectors for the major malaria-causing parasites P. falciparum and P. vivax. ResultsTo eliminate the possible detection of non-mosquito-derived bacteria, we used a transgenic, fluorescent strain of one of the identified bacteria, Serratiamarcescens, to infect mosquitoes and detect its presence in mosquito salivary glands as well as its transfer to, and colonization of, mammalian host tissues following a mosquito bite. We also showed that Plasmodium infection modified the mosquito microbiota, increasing the presence of Serratia while diminishing the presence of Elizabethkingia and that both P. berghei and Serratia were transferred to, and colonized mammalian tissues. DiscussionThese data thus document the presence of bacteria in mosquito saliva, their transfer to, and growth in a mammalian host as well as possible interactions with Plasmodium transmission. Together they raise the possible role of mosquitoes as vectors of bacterial infection and the utility of commensal mosquito bacteria for the development of transmission-blocking strategies within a mammalian host

    Glufosinate constrains synchronous and metachronous metastasis by promoting anti-tumor macrophages

    Get PDF
    Abstract Glutamine synthetase (GS) generates glutamine from glutamate and controls the release of inflammatory mediators. In macrophages, GS activity, driven by IL10, associates to the acquisition of M2‐like functions. Conditional deletion of GS in macrophages inhibits metastasis by boosting the formation of anti‐tumor, M1‐like, tumor‐associated macrophages (TAMs). From this basis, we evaluated the pharmacological potential of GS inhibitors in targeting metastasis, identifying glufosinate as a specific human GS inhibitor. Glufosinate was tested in both cultured macrophages and on mice bearing metastatic lung, skin and breast cancer. We found that glufosinate rewires macrophages toward an M1‐like phenotype both at the primary tumor and metastatic site, countering immunosuppression and promoting vessel sprouting. This was also accompanied to a reduction in cancer cell intravasation and extravasation, leading to synchronous and metachronous metastasis growth inhibition, but no effects on primary tumor growth. Glufosinate treatment was well‐tolerated, without liver and brain toxicity, nor hematopoietic defects. These results identify GS as a druggable enzyme to rewire macrophage functions and highlight the potential of targeting metabolic checkpoints in macrophages to treat cancer metastasis

    Interactions between Asaia, Plasmodium and Anopheles: new insights into mosquito symbiosis and implications in malaria symbiotic control

    Get PDF
    Background Malaria represents one of the most devastating infectious diseases. The lack of an effective vaccine and the emergence of drug resistance make necessary the development of new effective control methods. The recent identification of bacteria of the genus Asaia, associated with larvae and adults of malaria vectors, designates them as suitable candidates for malaria paratransgenic control. To better characterize the interactions between Asaia, Plasmodium and the mosquito immune system we performed an integrated experimental approach. Methods Quantitative PCR analysis of the amount of native Asaia was performed on individual Anopheles stephensi specimens. Mosquito infection was carried out with the strain PbGFPCON and the number of parasites in the midgut was counted by fluorescent microscopy. The colonisation of infected mosquitoes was achieved using GFP or DsRed tagged-Asaia strains. Reverse transcriptase-PCR analysis, growth and phagocytosis tests were performed using An. Stephensi and Drosophila melanogaster haemocyte cultures and DsRed tagged-Asaia and Escherichia coli strains. Results Using quantitative PCR we have quantified the relative amount of Asaia in infected and uninfected mosquitoes, showing that the parasite does not interfere with bacterial blooming. The correlation curves have confirmed the active replication of Asaia, while at the same time, the intense decrease of the parasite. The 'in vitro' immunological studies have shown that Asaia induces the expression of antimicrobial peptides, however, the growth curves in conditioned medium as well as a phagocytosis test, indicated that the bacterium is not an immune-target. Using fluorescent strains of Asaia and Plasmodium we defined their co-localisation in the mosquito midgut and salivary glands. Conclusions We have provided important information about the relationship of Asaia with both Plasmodium and Anopheles. First, physiological changes in the midgut following an infected or uninfected blood meal do not negatively affect the residing Asaia population that seems to benefit from this condition. Second, Asaia can act as an immune-modulator activating antimicrobial peptide expression and seems to be adapted to the host immune response. Last, the co-localization of Asaia and Plasmodium highlights the possibility of reducing vectorial competence using bacterial recombinant strains capable of releasing anti-parasite molecules
    corecore