1,031 research outputs found

    Linearized dynamical model for the NASA/IEEE SCOLE configuration

    Get PDF
    The linearized equation of motion for the NASA/IEEE SCOLE configuration are developed. The derivation is based on the method of Lagrange and the equations are assembled into matrix second order form

    Modeling the red sequence: Hierarchical growth yet slow luminosity evolution

    Full text link
    We explore the effects of mergers on the evolution of massive early-type galaxies by modeling the evolution of their stellar populations in a hierarchical context. We investigate how a realistic red sequence population set up by z~1 evolves under different assumptions for the merger and star formation histories, comparing changes in color, luminosity and mass. The purely passive fading of existing red sequence galaxies, with no further mergers or star formation, results in dramatic changes at the bright end of the luminosity function and color-magnitude relation. Without mergers there is too much evolution in luminosity at a fixed space density compared to observations. The change in color and magnitude at a fixed mass resemble that of a passively evolving population that formed relatively recently, at z~2. Mergers amongst the red sequence population ("dry mergers") occurring after z=1 build up mass, counteracting the fading of the existing stellar populations to give smaller changes in both color and luminosity for massive galaxies. By allowing some galaxies to migrate from the blue cloud onto the red sequence after z=1 through gas-rich mergers, younger stellar populations are added to the red sequence. This manifestation of the progenitor bias increases the scatter in age and results in even smaller changes in color and luminosity between z=1 and z=0 at a fixed mass. The resultant evolution appears much slower, resembling the passive evolution of a population that formed at high redshift (z~3-5) and is in closer agreement with observations. Measurements of the luminosity and color evolution alone are not sufficient to distinguish between the purely passive evolution of an old population and cosmologically motivated hierarchical growth, although these scenarios have very different implications for the mass growth of early-type galaxies over the last half of cosmic history.Comment: 14 pages, 4 figures. Final version accepted for publication in ApJ (2012, ApJ 753, 44

    A tensegrity approach to the optimal reinforcement of masonry domes and vaults through fiber-reinforced composite materials

    Get PDF
    We present a tensegrity approach to the strengthening of masonry vaults and domes performed by bonding grids of fiber reinforced composites to the masonry substrate. A topology optimization of such a reinforcement technique is formulated, on accounting for a tensegrity model of the reinforced structure; a minimal mass design strategy; different yield strengths of the masonry struts and tensile composite reinforcements; and multiple loading conditions. We show that the given optimization strategy can be profitably employed to rationally design fiber-reinforced composite material reinforcements of existing or new masonry vaults and domes, making use of the safe theorem of limit analysis. A wide collection of numerical examples dealing with real-life masonry domes and vaults highlight the technical potential of the proposed approach

    The Number Density Evolution of Extreme Emission Line Galaxies in 3D-HST: Results from a Novel Automated Line Search Technique for Slitless Spectroscopy

    Get PDF
    The multiplexing capability of slitless spectroscopy is a powerful asset in creating large spectroscopic datasets, but issues such as spectral confusion make the interpretation of the data challenging. Here we present a new method to search for emission lines in the slitless spectroscopic data from the 3D-HST survey utilizing the Wide-Field Camera 3 on board the Hubble Space Telescope. Using a novel statistical technique, we can detect compact (extended) emission lines at 90% completeness down to fluxes of 1.5 (3.0) times 10^{-17} erg/s/cm^2, close to the noise level of the grism exposures, for objects detected in the deep ancillary photometric data. Unlike previous methods, the Bayesian nature allows for probabilistic line identifications, namely redshift estimates, based on secondary emission line detections and/or photometric redshift priors. As a first application, we measure the comoving number density of Extreme Emission Line Galaxies (restframe [O III] 5007 equivalent widths in excess of 500 Angstroms). We find that these galaxies are nearly 10 times more common above z~1.5 than at z<0.5. With upcoming large grism surveys such as Euclid and WFIRST as well as grisms featuring prominently on the NIRISS and NIRCam instruments on James Webb Space Telescope, methods like the one presented here will be crucial for constructing emission line redshift catalogs in an automated and well-understood manner.Comment: 16 pages, 14 Figures; Accepted to Ap

    Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies with Relatively Old Stellar Populations at z~2

    Get PDF
    Quiescent galaxies at z~2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically-quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to Hbeta (4861A), we unambiguously identify metal absorption lines in the stacked spectrum, including the G-band (4304A), Mg I (5175A), and Na I (5894A). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was ~3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3^0.1_0.3 Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6^0.5_0.4 Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9^0.2_0.1 Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [OIII] and Hbeta emission. Interestingly, this emission is more centrally concentrated than the continuum with L_[OIII] = 1.7 +/- 0.3 x 10^40 erg s^-1, indicating residual central star formation or nuclear activity.Comment: 6 pages, 4 figures, accepted for publication in the Astrophysical Journal Letter

    CLEAR I: Ages and Metallicities of Quiescent Galaxies at 1.0<z<1.8\mathbf{1.0 < z < 1.8} Derived from Deep Hubble Space Telescope Grism Data

    Full text link
    We use deep \textit{Hubble Space Telescope} spectroscopy to constrain the metallicities and (\editone{light-weighted}) ages of massive (logM/M10\log M_\ast/M_\odot\gtrsim10) galaxies selected to have quiescent stellar populations at 1.0<z<1.81.0<z<1.8. The data include 12--orbit depth coverage with the WFC3/G102 grism covering \sim 8,000<λ<11,5008,000<\lambda<11,500~\AA\, at a spectral resolution of R210R\sim 210 taken as part of the CANDELS Lyman-α\alpha Emission at Reionization (CLEAR) survey. At 1.0<z<1.81.0<z<1.8, the spectra cover important stellar population features in the rest-frame optical. We simulate a suite of stellar population models at the grism resolution, fit these to the data for each galaxy, and derive posterior likelihood distributions for metallicity and age. We stack the posteriors for subgroups of galaxies in different redshift ranges that include different combinations of stellar absorption features. Our results give \editone{light-weighted ages of tz1.1=3.2±0.7t_{z \sim 1.1}= 3.2\pm 0.7~Gyr, tz1.2=2.2±0.6t_{z \sim 1.2}= 2.2\pm 0.6~Gyr, tz1.3=3.1±0.6t_{z\sim1.3}= 3.1\pm 0.6~Gyr, and tz1.6=2.0±0.6t_{z\sim1.6}= 2.0 \pm 0.6~Gyr, \editone{for galaxies at z1.1z\sim 1.1, 1.2, 1.3, and 1.6. This} implies that most of the massive quiescent galaxies at 168168\% of their stellar mass by a redshift of z>2z>2}. The posteriors give metallicities of \editone{Zz1.1=1.16±0.29Z_{z\sim1.1}=1.16 \pm 0.29~ZZ_\odot, Zz1.2=1.05±0.34Z_{z\sim1.2}=1.05 \pm 0.34~ZZ_\odot, Zz1.3=1.00±0.31Z_{z\sim1.3}=1.00 \pm 0.31~ZZ_\odot, and Zz1.6=0.95±0.39Z_{z\sim1.6}=0.95 \pm 0.39~ZZ_\odot}. This is evidence that massive galaxies had enriched rapidly to approximately Solar metallicities as early as z3z\sim3.Comment: 32 pages, 23 figures, Resubmited to ApJ after revisions in response to referee repor

    On the additive manufacturing, post-tensioning and testing of bi-material tensegrity structures

    Get PDF
    An investigation on the additive manufacturing and the experimental testing of 3D models of tensegrity prisms and columns is presented. An Electron Beam Melting facility (Arcam EBM S12) is employed to 3D print structures composed of tensegrity prisms endowed with rigid bases and temporary supports, which are made out of the titanium alloy Ti6Al4V. The temporary supports are removed after the additive manufacturing phase, when Spectra cross-strings are added to the 3D printed models, and a suitable state of internal prestress is applied to the structure. The experimental part of the study shows that the examined structures feature stiffening-type elastic response under large or moderately large axial strains induced by compressive loading. Such a geometrically nonlinear behavior confirms previous theoretical results available in the literature, and paves the way to the use of tensegrity prisms and columns as innovative mechanical metamaterials and smart devices
    corecore