556 research outputs found
Automated mass spectrometer/analysis system: A concept
System performs rapid multiple analyses of entire compound classes or individual compounds on small amounts of sample and reagent. Method will allow screening of large populations for metabolic disorders and establishment of effective-but-safe levels of therapeutic drugs in body fluids and tissues
Block-Diagonalization and f-electron Effects in Tight-Binding Theory
We extend a tight-binding total energy method to include f-electrons, and
apply it to the study of the structural and elastic properties of a range of
elements from Be to U. We find that the tight-binding parameters are as
accurate and transferable for f-electron systems as they are for d-electron
systems. In both cases we have found it essential to take great care in
constraining the fitting procedure by using a block-diagonalization procedure,
which we describe in detail.Comment: 9 pages, 6 figure
Energetics of metal slabs and clusters: the rectangle-box model
An expansion of energy characteristics of wide thin slab of thickness L in
power of 1/L is constructed using the free-electron approximation and the model
of a potential well of finite depth. Accuracy of results in each order of the
expansion is analyzed. Size dependences of the work function and electronic
elastic force for Au and Na slabs are calculated. It is concluded that the work
function of low-dimensional metal structure is always smaller that of
semi-infinite metal sample.
A mechanism for the Coulomb instability of charged metal clusters, different
from Rayleigh's one, is discussed. The two-component model of a metallic
cluster yields the different critical sizes depending on a kind of charging
particles (electrons or ions). For the cuboid clusters, the electronic spectrum
quantization is taken into account. The calculated critical sizes of
Ag_{N}^{2-} and Au_{N}^{3-} clusters are in a good agreement with experimental
data. A qualitative explanation is suggested for the Coulomb explosion of
positively charged Na_{\N}^{n+} clusters at 3<n<5.Comment: 11 pages, 6 figures, 1 tabl
On the constitution of sodium at higher densities
Using density functional theory the atomic and electronic structure of sodium
are predicted to depart substantially from those expected of simple metals for
GPa). Newly-predicted phases include those with low
structural symmetry, semi-metallic electronic properties (including zero-gap
semiconducting limiting behavior), unconventional valence charge density
distributions, and even those that raise the possibility of superconductivity,
all at currently achievable pressures. Important differences emerge between
sodium and lithium at high densities, and these are attributable to
corresponding differences in their respective cores.Comment: 13 pages; 3 figure
The electronic properties of bilayer graphene
We review the electronic properties of bilayer graphene, beginning with a
description of the tight-binding model of bilayer graphene and the derivation
of the effective Hamiltonian describing massive chiral quasiparticles in two
parabolic bands at low energy. We take into account five tight-binding
parameters of the Slonczewski-Weiss-McClure model of bulk graphite plus intra-
and interlayer asymmetry between atomic sites which induce band gaps in the
low-energy spectrum. The Hartree model of screening and band-gap opening due to
interlayer asymmetry in the presence of external gates is presented. The
tight-binding model is used to describe optical and transport properties
including the integer quantum Hall effect, and we also discuss orbital
magnetism, phonons and the influence of strain on electronic properties. We
conclude with an overview of electronic interaction effects.Comment: review, 31 pages, 15 figure
Ultra High Energy Cosmology with POLARBEAR
Observations of the temperature anisotropy of the Cosmic Microwave Background
(CMB) lend support to an inflationary origin of the universe, yet no direct
evidence verifying inflation exists. Many current experiments are focussing on
the CMB's polarization anisotropy, specifically its curl component (called
"B-mode" polarization), which remains undetected. The inflationary paradigm
predicts the existence of a primordial gravitational wave background that
imprints a unique B-mode signature on the CMB's polarization at large angular
scales. The CMB B-mode signal also encodes gravitational lensing information at
smaller angular scales, bearing the imprint of cosmological large scale
structures (LSS) which in turn may elucidate the properties of cosmological
neutrinos. The quest for detection of these signals; each of which is orders of
magnitude smaller than the CMB temperature anisotropy signal, has motivated the
development of background-limited detectors with precise control of systematic
effects. The POLARBEAR experiment is designed to perform a deep search for the
signature of gravitational waves from inflation and to characterize lensing of
the CMB by LSS. POLARBEAR is a 3.5 meter ground-based telescope with 3.8
arcminute angular resolution at 150 GHz. At the heart of the POLARBEAR receiver
is an array featuring 1274 antenna-coupled superconducting transition edge
sensor (TES) bolometers cooled to 0.25 Kelvin. POLARBEAR is designed to reach a
tensor-to-scalar ratio of 0.025 after two years of observation -- more than an
order of magnitude improvement over the current best results, which would test
physics at energies near the GUT scale. POLARBEAR had an engineering run in the
Inyo Mountains of Eastern California in 2010 and will begin observations in the
Atacama Desert in Chile in 2011.Comment: 8 pages, 6 figures, DPF 2011 conference proceeding
The new generation CMB B-mode polarization experiment: POLARBEAR
We describe the Cosmic Microwave Background (CMB) polarization experiment
called Polarbear. This experiment will use the dedicated Huan Tran Telescope
equipped with a powerful 1,200-bolometer array receiver to map the CMB
polarization with unprecedented accuracy. We summarize the experiment, its
goals, and current status
- …