259 research outputs found

    Dynamic ductile to brittle transition in a one-dimensional model of viscoplasticity

    Full text link
    We study two closely related, nonlinear models of a viscoplastic solid. These models capture essential features of plasticity over a wide range of strain rates and applied stresses. They exhibit inelastic strain relaxation and steady flow above a well defined yield stress. In this paper, we describe a first step in exploring the implications of these models for theories of fracture and related phenomena. We consider a one dimensional problem of decohesion from a substrate of a membrane that obeys the viscoplastic constitutive equations that we have constructed. We find that, quite generally, when the yield stress becomes smaller than some threshold value, the energy required for steady decohesion becomes a non-monotonic function of the decohesion speed. As a consequence, steady state decohesion at certain speeds becomes unstable. We believe that these results are relevant to understanding the ductile to brittle transition as well as fracture stability.Comment: 10 pages, REVTeX, 12 postscript figure

    Syn‐rift sediment gravity flow deposition on a Late Jurassic fault‐terraced slope, northern North Sea

    Get PDF
    Structurally controlled bathymetry in rifts has a significant influence on sediment routing pathways and depositional architecture of sediment gravity flow deposits. In contrast to rift segments characterized by crustal-scale half-grabens, the tectono-stratigraphic evolution of deep-water rift domains characterised by distributed faulting on narrow fault terraces has received little attention. We use 3D broadband seismic data, calibrated by boreholes, from the Lomre and Uer terraces in the northern North Sea rift to investigate Late Jurassic syn-rift sediment gravity flow systems on fault-terraced slopes. The sediment gravity flow fairways were sourced from hinterland drainages via basin margin deltaic systems on the Horda Platform to the southeast. The deep-water sedimentary systems evolve from initial, widespread submarine channelized lobe complexes, through submarine channels, to incised submarine canyons. This progressive confinement of the sediment gravity flow system was concomitant with progressive localization of strain onto the main terrace-bounding faults. Although the normal fault network on the terraces has local impact on deep-water sediment transport and the architecture of gravity flow deposits, it is the regional basin margin to rift axis gradient that dominantly controls deep-water sediment routing. Furthermore, the gravity flow deposits on the Lomre and Uer terraces were predominantly sourced by rift margin deltaic systems, not from erosion of local uplifted footwall crests, emphasising the significance of hinterland catchments in the development of volumetrically significant deep-water syn-rift depositional systems

    Water

    Get PDF
    Meta-analysis can be a powerful tool for demonstrating the applicability of a concept beyond the context of individual clinical trials and observational studies, including exploration of effects across different subgroups. Meta-analysis avoids Simpson's paradox, in which a consistent effect in constituent trials is reversed when results are simply pooled. Meta-analysis in critical care medicine is made more complicated, however, by the heterogeneous nature of critically ill patients and the contexts within which they are treated. Failure to properly adjust for this heterogeneity risks missing important subgroup effects in, for example, the interaction of treatment with varying levels of baseline risk. When subgroups are defined by characteristics that vary within constituent trials (such as age) rather than features constant within each trial (such as drug dose), there is the additional risk of incorrect conclusions due to the ecological fallacy. The present review explains these problems and the strategies by which they are overcome

    Naturally-Acquired Influenza-Specific CD4+ T-Cell Proliferative Responses Are Impaired in HIV-Infected African Adults

    Get PDF
    BACKGROUND Seasonal influenza has been associated with greater morbidity and mortality in AIDS patients. Highly-active antiretroviral therapy (HAART) has led to some reduction in influenza-related complications but the nature of naturally-acquired T-cell immunity to influenza virus in an African setting, and how this changes with immune reconstitution following HAART is unknown. We measured influenza-specific CD4(+) T-cell immunity in unimmunized HIV-infected Malawian adults and then investigated immune reconstitution following HAART. METHODS Peripheral blood mononuclear cells were isolated from HIV-infected and HIV-uninfected Malawian adults. CFSE proliferation and CD154 expression flow cytometry-based assays were used to measure influenza-specific CD4(+) T-cell immunity. RESULTS We found lower naturally-acquired proliferative influenza-specific CD4(+) T-cell responses in AIDS patients that was also present in asymptomatic HIV-infected adults with relatively high CD4 counts (>350 cells/µl). Influenza-specific CD4(+) T-cell immune reconstitution in HIV-infected patients on HAART for 12 months was poor despite a marked reduction in viral load and an increase in CD4 count. This poor immune reconstitution was characterised by a low influenza-specific proliferative CD4(+) T-cell response and reduced proportions of CD154-expressing influenza-specific CD4(+) T-cells in peripheral blood. CONCLUSION Our data suggest that asymptomatic HIV-infected adults may also be at risk of influenza-related complications and that HAART alone may not circumvent this risk in AIDS patients. This study highlights the need to identify possible interventions early in HIV infection to reduce the risk of influenza and to intensify influenza surveillance in these susceptible African populations

    Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND:Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders. METHODS:We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach. FINDINGS:Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247-308]) and second leading cause of deaths (9·0 million [8·8-9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34-44] and DALYs by 15% [9-21]) whereas their age-standardised rates decreased (deaths by 28% [26-30] and DALYs by 27% [24-31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6-46·1]), migraine (16·3% [11·7-20·8]), Alzheimer's and other dementias (10·4% [9·0-12·1]), and meningitis (7·9% [6·6-10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05-1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5-90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8-35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8-17·5] of DALYs are risk attributable). INTERPRETATION:Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies. FUNDING:Bill & Melinda Gates Foundation.Valery L Feigin, Emma Nichols, Tahiya Alam ... Bernhard T Baune ... Garumma Tolu Feyissa ... Tiffany K Gill ... Jean Jacques Noubiap ... Andrew T Olagunju ... Engida Yisma ... et al. (GBD 2016 Neurology Collaborators

    The global meningitis genome partnership

    Get PDF
    GGenomic surveillance of bacterial meningitis pathogens is essential for effective disease control globally, enabling identification of emerging and expanding strains and consequent public health interventions. While there has been a rise in the use of whole genome sequencing, this has been driven predominately by a subset of countries with adequate capacity and resources. Global capacity to participate in surveillance needs to be expanded, particularly in low and middle-income countries with high disease burdens. In light of this, the WHO-led collaboration, Defeating Meningitis by 2030 Global Roadmap, has called for the establishment of a Global Meningitis Genome Partnership that links resources for: N. meningitidis (Nm), S. pneumoniae (Sp), H. influenzae (Hi) and S. agalactiae (Sa) to improve worldwide co-ordination of strain identification and tracking. Existing platforms containing relevant genomes include: PubMLST: Nm (31,622), Sp (15,132), Hi (1935), Sa (9026); The Wellcome Sanger Institute: Nm (13,711), Sp (> 24,000), Sa (6200), Hi (1738); and BMGAP: Nm (8785), Hi (2030). A steering group is being established to coordinate the initiative and encourage high-quality data curation. Next steps include: developing guidelines on open-access sharing of genomic data; defining a core set of metadata; and facilitating development of user-friendly interfaces that represent publicly available data

    T Regulatory Cells Control Susceptibility to Invasive Pneumococcal Pneumonia in Mice

    Get PDF
    Streptococcus pneumoniae is an important human pathogen responsible for a spectrum of diseases including pneumonia. Immunological and pro-inflammatory processes induced in the lung during pneumococcal infection are well documented, but little is known about the role played by immunoregulatory cells and cytokines in the control of such responses. We demonstrate considerable differences in the immunomodulatory cytokine transforming growth factor (TGF)-β between the pneumococcal pneumonia resistant BALB/c and susceptible CBA/Ca mouse strains. Immunohistochemistry and flow cytometry reveal higher levels of TGF-β protein in BALB/c lungs during pneumococcal pneumonia that correlates with a rapid rise in lung Foxp3+Helios+ T regulatory cells. These cells have protective functions during pneumococcal pneumonia, because blocking their induction with an inhibitor of TGF-β impairs BALB/c resistance to infection and aids bacterial dissemination from lungs. Conversely, adoptive transfer of T regulatory cells to CBA/Ca mice, prior to infection, prolongs survival and decreases bacterial dissemination from lungs to blood. Importantly, strong T regulatory cell responses also correlate with disease-resistance in outbred MF1 mice, confirming the importance of immunoregulatory cells in controlling protective responses to the pneumococcus. This study provides exciting new evidence for the importance of immunomodulation during pulmonary pneumococcal infection and suggests that TGF-β signalling is a potential target for immunotherapy or drug design

    Extracellular vesicles from pluripotent stem cell-derived mesenchymal stem cells acquire a stromal modulatory proteomic pattern during differentiation

    Get PDF
    Mesenchymal stem/stromal cells (MSCs) obtained from pluripotent stem cells (PSCs) constitute an interesting alternative to classical MSCs in regenerative medicine. Among their many mechanisms of action, MSC extracellular vesicles (EVs) are a potential suitable substitute for MSCs in future cell-free-based therapeutic approaches. Unlike cells, EVs do not elicit acute immune rejection, and they can be produced in large quantities and stored until ready to use. Although the therapeutic potential of MSC EVs has already been proven, a thorough characterization of MSC EVs is lacking. In this work, we used a label-free liquid chromatography tandem mass spectrometry proteomic approach to identify the most abundant proteins in EVs that are secreted from MSCs derived from PSCs (PD-MSCs) and from their parental induced PSCs (iPSCs). Next, we compared both datasets and found that while iPSC EVs enclose proteins that modulate RNA and microRNA stability and protein sorting, PD-MSC EVs are rich in proteins that organize extracellular matrix, regulate locomotion, and influence cell–substrate adhesion. Moreover, compared to their respective cells, iPSCs and iPSC EVs share a greater proportion of proteins, while the PD-MSC proteome appears to be more specific. Correlation and principal component analysis consistently aggregate iPSCs and iPSC EVs but segregate PD-MSC and their EVs. Altogether, these findings suggest that during differentiation, compared with their parental iPSC EVs, PD-MSC EVs acquire a more specific set of proteins; arguably, this difference might confer their therapeutic properties.Fil: la Greca, Alejandro Damián. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Solari, Claudia María. Ministerio de Ciencia. Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Furmento, Verónica Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lombardi, Antonella. Universidad de Buenos Aires; ArgentinaFil: Biani, María Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Aban, Cyntia Estefania. Ministerio de Ciencia. Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica; ArgentinaFil: Moro, Lucía Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: García, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Guberman, Alejandra Sonia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Sevlever, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Miriuka, Santiago Gabriel. Universidad Nacional de La Plata; ArgentinaFil: Luzzani, Carlos Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore