1,901 research outputs found
Flux creep in Bi2Sr2Ca1Cu2O(8+x) single crystals
Dissipative effects were investigated in Bi2Sr2Ca1Cu2O(8+x) single crystals by critical current and magnetic relaxation measurements. Activation energies for the flux motion were determined from the temperature dependence of the critical current and from the time decay of the zero field cooled and the remanent magnetization. The effective activation energy was found to increase with temperature, in agreement with the existence of a distribution of activation energies (E sub o 20 meV at 4.2 K for H + 10 kOe applied parallel to the c-axis.)
Flux creep in Bi2Sr2CaCu2O8(sub +x) single crystals
The results of a magnetic study on a Bi2Sr2CaCu2O(8+x) single crystal are reported. Low field susceptibility (dc and ac), magnetization cycles and time dependent measurements were performed. With increasing the temperature the irreversible regime of the magnetization cycles is rapidly restricted to low fields, showing that the critical current J(sub c) becomes strongly field dependent well below T(sub c). At 2.4 K the critical current in zero field, determined from the remanent magnetization by using the Bean formula for the critical state, is J(sub c) = 2 10(exp 5) A/sq cm. The temperature dependence of J(sub c) is satisfactorily described by the phenomenological law J(sub c) = J(sub c) (0) (1 - T/T(sub c) (sup n), with n = 8. The time decay of the zero field cooled magnetization and of the remanent magnetization was studied at different temperatures for different magnetic fields. The time decay was found to be logarithmic in both cases, at least at low temperatures. At T = 4.2 K for a field of 10 kOe applied parallel to the c axis, the average pinning energy, determined by using the flux creep model, is U(sub o) = 0.010 eV
Protein kinase CK2 is widely expressed in follicular, Burkitt and diffuse large B-cell lymphomas and propels malignant B-cell growth.
Serine-threonine kinase CK2 is highly expressed and pivotal for survival and proliferation in multiple myeloma, chronic lymphocytic leukemia and mantle cell lymphoma. Here, we investigated the expression of \u3b1 catalytic and \u3b2 regulatory CK2 subunits by immunohistochemistry in 57 follicular (FL), 18 Burkitt (BL), 52 diffuse large B-cell (DLBCL) non-Hodgkin lymphomas (NHL) and in normal reactive follicles. In silico evaluation of available Gene Expression Profile (GEP) data sets from patients and Western blot (WB) analysis in NHL cell-lines were also performed. Moreover, the novel, clinical-grade, ATP-competitive CK2-inhibitor CX-4945 (Silmitasertib) was assayed on lymphoma cells. CK2 was detected in 98.4% of cases with a trend towards a stronger CK2\u3b1 immunostain in BL compared to FL and DLBCL. No significant differences were observed between Germinal Center B (GCB) and non-GCB DLBCL types. GEP data and WB confirmed elevated CK2 mRNA and protein levels as well as active phosphorylation of specific targets in NHL cells. CX-4945 caused a dose-dependent growth-arresting effect on GCB, non-GCB DLBCL and BL cell-lines and it efficiently shut off phosphorylation of NF-\u3baB RelA and CDC37 on CK2 target sites. Thus, CK2 is highly expressed and could represent a suitable therapeutic target in BL, FL and DLBCL NHL
Hodgkin lymphoma: A special microenvironment
Classical Hodgknâs lymphoma (cHL) is one of the most particular lymphomas for the few tumor cells surrounded by an inflammatory microenvironment. Reed-Sternberg (RS) and Hodgkin (H) cells reprogram and evade antitumor mechanisms of the normal cells present in the microenvi-ronment. The cells of microenvironment are essential for growth and survival of the RS/H cells and are recruited through the effect of cytokines/chemokines. We summarize recent advances in gene expression profiling (GEP) analysis applied to study microenvironment component in cHL. We also describe the main therapies that target not only the neoplastic cells but also the cellular components of the background
Low energy conversion electron detection in superfluid He3 at ultra-low temperature
We report on the first results of the MACHe3 (MAtrix of Cells of Helium 3)
prototype experiment concerning the measurement of low energy conversion
electrons at ultra-low temperature. For the first time, the feasibility of the
detection of low energy electrons is demonstrated in superfluid He3-B cooled
down to 100 microK. Low energy electrons at 7.3 keV coming from the K shell
conversion of the 14.4 keV nuclear transition of a low activity Co57 source are
detected, opening the possibility to use a He3-based detector for the detection
of Weakly Interacting Massive Particles (WIMPs) which are expected to release
an amount of energy higher-bounded by 5.6 keV.Comment: 8 pages, 3 figures, to appear in NIM
First measurement of low intensity fast neutron background from rock at the Boulby Underground Laboratory
A technique to measure low intensity fast neutron flux has been developed.
The design, calibrations, procedure for data analysis and interpretation of the
results are discussed in detail. The technique has been applied to measure the
neutron background from rock at the Boulby Underground Laboratory, a site used
for dark matter and other experiments, requiring shielding from cosmic ray
muons. The experiment was performed using a liquid scintillation detector. A
6.1 litre volume stainless steel cell was filled with an in-house made liquid
scintillator loaded with Gd to enhance neutron capture. A two-pulse signature
(proton recoils followed by gammas from neutron capture) was used to identify
the neutron events from much larger gamma background from PMTs. Suppression of
gammas from the rock was achieved by surrounding the detector with high-purity
lead and copper. Calibrations of the detector were performed with various gamma
and neutron sources. Special care was taken to eliminate PMT afterpulses and
correlated background events from the delayed coincidences of two pulses in the
Bi-Po decay chain. A four month run revealed a neutron-induced event rate of
1.84 +- 0.65 (stat.) events/day. Monte Carlo simulations based on the GEANT4
toolkit were carried out to estimate the efficiency of the detector and the
energy spectra of the expected proton recoils. From comparison of the measured
rate with Monte Carlo simulations the flux of fast neutrons from rock was
estimated as (1.72 +- 0.61 (stat.) +- 0.38 (syst.))*10^(-6) cm^(-2) s^(-1)
above 0.5 MeV.Comment: 37 pages, 24 figures, to be published in Astroparticle Physic
The politics of alcohol policy in Nigeria: a critical analysis of how and why brewers use strategic ambiguity to supplant policy initiatives
The global call by the World Health Assembly (WHA) to control the rising alcohol-related problems caused by harmful consumption through policy became necessary in 2005 due to the recognition of the fact that many countries did not have alcohol policies. This gave rise to the adoption of a ten-point policy strategy by the World Health Organization (WHO) Member States in 2010. Against this backdrop, many countries adopted alcohol policies to reduce harmful alcohol consumption. Nigeria was one of the WHO Member Countries that adopted the resolution. Nigeria is among the 30 countries with the highest per capita consumption and alcohol-related problems, yet has not formulated alcohol policy to date. This paper draws on Eisenbergâs Strategic Ambiguity Model to explore the role of brewers in supplanting alcohol policy initiatives in Nigeria. It argues that the leading alcohol producers in Nigeria have been the main reason alcohol policies have not been formulated. The article focuses on why their campaigns for responsible drinking, promotions, sponsorships and âstrategic social responsibilitiesâ may have increased since the WHA made the call and the WHO adopted the resolution in 2010. It concludes by arguing that there is an urgent need to formulate policies drawing from the WHO resolution to curtail the activities of these brewers and reduce harmful consumption
An analysis method for time ordered data processing of Dark Matter experiments
The analysis of the time ordered data of Dark Matter experiments is becoming
more and more challenging with the increase of sensitivity in the ongoing and
forthcoming projects. Combined with the well-known level of background events,
this leads to a rather high level of pile-up in the data. Ionization,
scintillation as well as bolometric signals present common features in their
acquisition timeline: low frequency baselines, random gaussian noise, parasitic
noise and signal characterized by well-defined peaks. In particular, in the
case of long-lasting signals such as bolometric ones, the pile-up of events may
lead to an inaccurate reconstruction of the physical signal (misidentification
as well as fake events). We present a general method to detect and extract
signals in noisy data with a high pile-up rate and qe show that events from few
keV to hundreds of keV can be reconstructed in time ordered data presenting a
high pile-up rate. This method is based on an iterative detection and fitting
procedure combined with prior wavelet-based denoising of the data and baseline
subtraction. {We have tested this method on simulated data of the MACHe3
prototype experiment and shown that the iterative fitting procedure allows us
to recover the lowest energy events, of the order of a few keV, in the presence
of background signals from a few to hundreds of keV. Finally we applied this
method to the recent MACHe3 data to successfully measure the spectrum of
conversion electrons from Co57 source and also the spectrum of the background
cosmic muons
Performance of a Large Area Avalanche Photodiode in a Liquid Xenon Ionization and Scintillation Chamber
Scintillation light produced in liquid xenon (LXe) by alpha particles,
electrons and gamma-rays was detected with a large area avalanche photodiode
(LAAPD) immersed in the liquid. The alpha scintillation yield was measured as a
function of applied electric field. We estimate the quantum efficiency of the
LAAPD to be 45%. The best energy resolution from the light measurement at zero
electric field is 7.5%(sigma) for 976 keV internal conversion electrons from
Bi-207 and 2.6%(sigma) for 5.5 MeV alpha particles from Am-241. The detector
used for these measurements was also operated as a gridded ionization chamber
to measure the charge yield. We confirm that using a LAAPD in LXe does not
introduce impurities which inhibit the drifting of free electrons.Comment: 13 pages, 8 figure
- âŠ