344 research outputs found

    Radical-containing ultrafine particulate matter initiates epithelial-to-mesenchymal transitions in airway epithelial cells

    Get PDF
    Environmentally persistent free radicals (EPFRs) in combustion generated particulate matter (PM) are capable of inducing pulmonary pathologies and contributing to the development of environmental asthma. In vivo exposure of infant rats to EPFRs demonstrates their ability to induce airway hyperresponsiveness to methacholine, a hallmark of asthma. However, the mechanisms by which combustion-derived EPFRs elicit in vivo responses remain elusive. In this study, we used a chemically defined EPFR consisting of approximately 0.2 μm amorphrous silica containing 3% cupric oxide with the organic pollutant 1,2-dichlorobenzene (DCB-230). DCB-230 possesses similar radical content to urban-collected EPFRs but offers several advantages, including lack of contaminants and chemical uniformity. DCB-230 was readily taken up by BEAS-2B and at high doses (200 μg/cm2) caused substantial necrosis. At low doses (20 μg/cm2), DCB-230 particles caused lysosomal membrane permeabilization, oxidative stress, and lipid peroxidation within 24 hours of exposure. During this period, BEAS-2B underwent epithelial-to-mesenchymal transition (EMT), including loss of epithelial cell morphology, decreased E-cadherin expression, and increased α-smooth muscle actin (α-SMA) and collagen I production. Similar results were observed in neonatal air-liquid interface culture (i.e., disruption of epithelial integrity and EMT). Acute exposure of infant mice to DCB-230 resulted in EMT, as confirmed by lineage tracing studies and evidenced by coexpression of epithelial E-cadherin and mesenchymal α-SMA proteins in airway cells and increased SNAI1 expression in the lungs. EMT in neonatal mouse lungs after EPFR exposure may provide an explanation for epidemiological evidence supporting PM exposure and increased risk of asthma. Copyright © 2013 by the American Thoracic Society

    3D morphometric analysis of calcified cartilage properties using micro-computed tomography

    Get PDF
    Objective: Our aim is to establish methods for quantifying morphometric properties of calcified cartilage (CC) from micro-computed tomography (mu CT). Furthermore, we evaluated the feasibility of these methods in investigating relationships between osteoarthritis (OA), tidemark surface morphology and open subchondral channels (OSCCs). Method: Samples (n = 15) used in this study were harvested from human lateral tibial plateau (n = 8). Conventional roughness and parameters assessing local 3-dimensional (3D) surface variations were used to quantify the surface morphology of the CC. Subchondral channel properties (percentage, density, size) were also calculated. As a reference, histological sections were evaluated using Histopathological osteoarthritis grading (OARSI) and thickness of CC and subchondral bone (SCB) was quantified. Results: OARSI grade correlated with a decrease in local 3D variations of the tidemark surface (amount of different surface patterns (r(s) = -0.600, P = 0.018), entropy of patterns (EP) (r(s) = -0.648, P = 0.018), homogeneity index (HI) (r(s) = 0.555, P = 0.032)) and tidemark roughness (TMR) (r(s) = -0.579, P = 0.024). Amount of different patterns (ADP) and EP associated with channel area fraction (CAF) (r(p) = 0.876, P <0.0001; r(p) = 0.665, P = 0.007, respectively) and channel density (CD) (r(p) = 0.680, P = 0.011; r(p) = 0.582, P = 0.023, respectively). TMR was associated with CAF (r(p) = 0.926, P <0.0001) and average channel size (r(p) = 0.574, P = 0.025). CC topography differed statistically significantly in early OA vs healthy samples. Conclusion: We introduced a mu-CT image method to quantify 3D CC topography and perforations through CC. CC topography was associated with OARSI grade and OSCC properties; this suggests that the established methods can detect topographical changes in tidemark and CC perforations associated with OA. (c) 2018 The Authors. Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Use of albumin infusion for cirrhosis-related complications. An international position statement

    Get PDF
    Background &amp; Aims: Numerous studies have evaluated the role of human albumin (HA) in managing various liver cirrhosis-related complications. However, their conclusions remain partially controversial, probably because HA was evaluated in different settings, including indications, patient characteristics, and dosage and duration of therapy. Methods: Thirty-three investigators from 19 countries with expertise in the management of liver cirrhosis-related complications were invited to organise an International Special Interest Group. A three-round Delphi consensus process was conducted to complete the international position statement on the use of HA for treatment of liver cirrhosis-related complications. Results: Twelve clinically significant position statements were proposed. Short-term infusion of HA should be recommended for the management of hepatorenal syndrome, large volume paracentesis, and spontaneous bacterial peritonitis in liver cirrhosis. Its effects on the prevention or treatment of other liver cirrhosis-related complications should be further elucidated. Long-term HA administration can be considered in specific settings. Pulmonary oedema should be closely monitored as a potential adverse effect in cirrhotic patients receiving HA infusion. Conclusions: Based on the currently available evidence, the international position statement suggests the potential benefits of HA for the management of multiple liver cirrhosis-related complications and summarises its safety profile. However, its optimal timing and infusion strategy remain to be further elucidated. Impact and implications: Thirty-three investigators from 19 countries proposed 12 position statements on the use of human albumin (HA) infusion in liver cirrhosis-related complications. Based on current evidence, short-term HA infusion should be recommended for the management of HRS, LVP, and SBP; whereas, long-term HA administration can be considered in the setting where budget and logistical issues can be resolved. However, pulmonary oedema should be closely monitored in cirrhotic patients who receive HA infusion

    Formation of Nano-Bio-Complex as Nanomaterials Dispersed in a Biological Solution for Understanding Nanobiological Interactions

    Get PDF
    Information on how cells interface with nanomaterials in biological environments has important implications for the practice of nanomedicine and safety consideration of nanomaterials. However, our current understanding of nanobiological interactions is still very limited. Here, we report the direct observation of nanomaterial bio-complex formation (other than protein corona) from nanomaterials dispersed in biologically relevant solutions. We observed highly selective binding of the components of cell culture medium and phosphate buffered saline to ZnO and CuO nanoparticles, independent of protein molecules. Our discoveries may provide new insights into the understanding of how cells interact with nanomaterials

    Covalent enzyme coupling on cellulose acetate membranes for glucose sensor development

    Get PDF
    International audienceMethods for immobilizing glucose oxidase (GOx) on cellulose acetate (CA) membranes are compared. The optimal method involves covalent coupling of bovine serum albumin (BSA) to CA membrane and a subsequent reaction of the membrane with GOx, which has previously been activated with an excess of p-benzoquinone. This coupling procedure is fairly reproducible and allows the preparation of thin membranes (5-20 µm) showing high surface activities (1-3 U/cm2) which are stable over a period of 1-3 months. Electrochemical and radiolabeling experiments show that enzyme inactivation as a result of immobilization is negligible. A good correlation between surface activity of membranes and their GOx load is observed

    The chemical signatures underlying host plant discrimination by aphids

    Get PDF
    The diversity of phytophagous insects is largely attributable to speciation involving shifts between host plants. These shifts are mediated by the close interaction between insects and plant metabolites. However, there has been limited progress in understanding the chemical signatures that underlie host preferences. We use the pea aphid (Acyrthosiphon pisum) to address this problem. Host-associated races of pea aphid discriminate between plant species in race-specific ways. We combined metabolomic profiling of multiple plant species with behavioural tests on two A. pisum races, to identify metabolites that explain variation in either acceptance or discrimination. Candidate compounds were identified using tandem mass spectrometry. Our results reveal a small number of compounds that explain a large proportion of variation in the differential acceptability of plants to A. pisum races. Two of these were identified as L-phenylalanine and L-tyrosine but it may be that metabolically-related compounds directly influence insect behaviour. The compounds implicated in differential acceptability were not related to the set correlated with general acceptability of plants to aphids, regardless of host race. Small changes in response to common metabolites may underlie host shifts. This study opens new opportunities for understanding the mechanistic basis of host discrimination and host shifts in insects

    Rheological properties of magnetic biogels

    Get PDF
    We report an experimental and theoretical study of the rheological properties of magnetic biogels consisting of fibrin polymer networks with embedded magnetite nanoparticles, swollen by aqueous solutions. We studied two types of magnetic biogels, differenced by the presence or absence of an applied magnetic field during the initial steps of cross-linking. The experiments demonstrated very strong dependence of the elastic modulus of the magnetic biogels on the concentration of the magnetic particles. We finally developed some theoretical models that explain the observed strong concentration effects.This study was supported by projects FIS2013-41821-R (Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, MINECO, Spain, co-funded by ERDF, European Union) and FIS2017-85954-R (Ministerio de Economía, Industria y Competitividad, MINECO, andAgencia Estatal de Investigación, AEI, Spain, co-funded by Fondo Europeo de Desarrollo Regional, FEDER, European Union). A.Z. is grateful to the program of the Ministry of Education and Science of the Russian Federation, projects 02.A03.21.0006, 3.1438.2017/4.6, and 3.5214.2017/6.7, as well as to the Russian Fund of Basic Researches, project 18-08-00178

    A new technique for seeding chondrocytes onto solvent-preserved human meniscus using the chemokinetic effect of recombinant human bone morphogenetic protein-2

    Get PDF
    Many investigators are currently studying the use of decellularized tissue allografts from human cadavers as scaffolds onto which patients’ cells could be seeded, or as carriers for genetically engineered cells to aid cell transplantation. However, it is difficult to seed cells onto very dense regular connective tissue which has few interstitial spaces. Here, we discuss the development of a chemotactic cell seeding technique using solvent-preserved human meniscus. A chemokinetic response to recombinant human bone morphogenetic protein-2 (rhBMP-2) was observed in a monolayer culture of primary chondrocytes derived from femoral epiphyseal cartilage of 2-day-old rats. The rhBMP-2 significantly increased their migration upto 10 ng/ml in a dose-dependent manner. When tested with solvent-preserved human meniscus as a scaffold, which has few interstitial spaces, rhBMP-2 was able to induce chondrocytes to migrate into the meniscus. After a 3-week incubation, newly-formed cartilaginous extracellular matrix was synthesized by migrated chondrocytes throughout the meniscus, down to a depth of 3 mm. These findings demonstrate that rhBMP-2 may be a natural chemokinetic factor in vivo, which induces migration of proliferative chondrocytes into the narrow interfibrous spaces. Our results suggest a potential application of rhBMP-2 for the designed distribution of chondrocytes into a scaffold to be used for tissue engineering
    corecore