57 research outputs found
Aristotleâs scientific contributions to the classification, nomenclature and distribution of marine organisms
The biological works of the Greek philosopher Aristotle include a significant amount of information on marine animals. This study is an overview of Aristotleâs scientific contribution to the knowledge of marine biodiversity and specifically to taxonomic classification, nomenclature and distribution of marine species. Our results show that Aristotleâs approach looks remarkably familiar to present day marine biologists since: (i) although not directly aiming at it, he gave a taxonomic classification of marine animals, which includes physical groups ranked on three levels at least; (ii) most of Aristotleâs marine âmajor groupsâ correspond to taxa of the order rank in Linnaeusâs classification and to taxa of the class rank in the current classification; (iii) a positive correlation was found between the number of taxa per group identified in Aristotleâs writings and those described by Linnaeus; (iv) Aristotleâs classification system exhibits similarities with the current one regarding the way taxa are distributed to higher categories; (v) a considerable number of Aristotleâs marine animal names have been used for the creation of the scientific names currently in use; (vi) he was the first to give an account of Mediterranean marine fauna, focusing on the Aegean Sea and adjacent areas. In view of the above, we suggest that the foundations of marine taxonomy as laid down by Aristotle are still echoing today
Role of deep sponge grounds in the Mediterranean Sea: a case study in southern Italy
The Mediterranean spongofauna is relatively well-known for habitats shallower than 100 m, but, differently from oceanic basins, information upon diversity and functional role of sponge grounds inhabiting deep environments is much more fragmentary. Aims of this article are to characterize through ROV image analysis the population structure of the sponge assemblages found in two deep habitats of the Mediterranean Sea and to test their structuring role, mainly focusing on the demosponges Pachastrella monilifera Schmidt, 1868 and Poecillastra compressa (Bowerbank, 1866). In both study sites, the two target sponge species constitute a mixed assemblage. In the Amendolara Bank (Ionian Sea), where P. compressa is the most abundant species, sponges extend on a peculiar tabular bedrock between 120 and 180 m depth with an average total abundance of 7.3 +/- 1.1 specimens m(-2) (approximately 230 gWW m(-2) of biomass). In contrast, the deeper assemblage of Bari Canyon (average total abundance 10.0 +/- 0.7 specimens m(-2), approximately 315 gWW m(-2) of biomass), located in the southwestern Adriatic Sea between 380 and 500 m depth, is dominated by P. monilifera mixed with living colonies of the scleractinian Madrepora oculata Linnaeus, 1758, the latter showing a total biomass comparable to that of sponges (386 gWW m(-2)). Due to their erect growth habit, these sponges contribute to create complex three-dimensional habitats in otherwise homogenous environments exposed to high sedimentation rates and attract numerous species of mobile invertebrates (mainly echinoderms) and fish. Sponges themselves may represent a secondary substrate for a specialized associated fauna, such zoanthids. As demonstrated in oceanic environments sponge beds support also in the Mediterranean Sea locally rich biodiversity levels. Sponges emerge also as important elements of benthic-pelagic coupling in these deep habitats. In fact, while exploiting the suspended organic matter, about 20% of the Bari sponge assemblage is also severely affected by cidarid sea urchin grazing, responsible to cause visible damages to the sponge tissues (an average of 12.1 +/- 1.8 gWW of individual biomass removed by grazing). Hence, in deep-sea ecosystems, not only the coral habitats, but also the grounds of massive sponges represent important biodiversity reservoirs and contribute to the trophic recycling of organic matter
Neue linguistische Methoden und arbeitstechnische Verfahren in der Erschliessung der ägyptischen Grammatik
15 pĂĄginas, 1 tabla, 6 figuras.Does diversity beget diversity? Diversity
includes a diversity of concepts because it is linked to
variability in and of life and can be applied to multiple
levels. The connections between multiple levels of
diversity are poorly understood. Here, we investigated
the relationships between genetic, bacterial, and
chemical diversity of the endangered Atlanto-Mediterranean sponge Spongia lamella. These levels of
diversity are intrinsically related to sponge evolution
and could have strong conservation implications. We
used microsatellite markers, denaturing gel gradient
electrophoresis and quantitative polymerase chain
reaction, and high performance liquid chromatography to quantify genetic, bacterial, and chemical
diversity of nine sponge populations. We then used
correlations to test whether these diversity levels
covaried. We found that sponge populations differed
signiďŹcantly in genetic, bacterial, and chemical
diversity. We also found a strong geographic pattern
of increasing genetic, bacterial, and chemical dissimilarity with increasing geographic distance between
populations. However, we failed to detect signiďŹcant
correlations between the three levels of diversity
investigated in our study. Our results suggest that
diversity fails to beget diversity within a single species
and indicates that a diversity of factors regulates a
diversity of diversities, which highlights the complex
nature of the mechanisms behind diversityResearch funded by grants from the Agence Nationale de la
Recherche (ECIMAR), from the Spanish Ministry of Science
and Technology SOLID (CTM2010-17755) and Benthomics
(CTM2010-22218-C02-01) and the BIOCAPITAL project
(MRTN-CT-2004-512301) of the European Union. This is a
contribution of the Consolidated Research Group ââGrupo de
EcologĹ´a Bento´nica,ââ SGR2009-655.Peer reviewe
Global Diversity of Sponges (Porifera)
With the completion of a single unified classification, the Systema Porifera (SP) and subsequent development of an online species database, the World Porifera Database (WPD), we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all âknownâ sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future
The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats
The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yetâundescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well
Marine invertebrate diversity in Aristotle's zoology
The aim of this paper is to bring to light Aristotle's knowledge of marine invertebrate diversity as this has been recorded in his works 25 centuries ago, and set it against current knowledge. The analysis of information derived from a thorough study of his zoological writings revealed 866 records related to animals currently classified as marine invertebrates. These records corresponded to 94 different animal names or descriptive phrases which were assigned to 85 current marine invertebrate taxa, mostly (58%) at the species level. A detailed, annotated catalogue of all marine anhaima (a = without, haima = blood) appearing in Aristotle's zoological works was constructed and several older confusions were clarified. Some of Aristotle's "genera" were found to be directly correlated to current invertebrate higher taxa. Almost the total of the marine anhaima were benthic invertebrates. The great philosopher had a remarkable, well-balanced scientific knowledge of the diversity of the various invertebrate groups, very similar to that acquired by modern marine biologists in the same area of study. The results of the present study should be considered as a necessary starting point for a further analysis of Aristotle's priceless contribution to the marine environment and its organisms
Hemiasterella aristoteliana n.sp. (Porifera: Hadromerida) from the Aegean Sea with a discussion of the family Hemiasterellidae
A representative of the genus Hemiasterella Carter, 1879 was found for the first time in the Mediterranean Sea during sampling in the shallow waters of the northern Aegean Sea. The new species, H. aristoteliana, is compared with Atlantic Hemiasterella elongata Topsent, 1928. The status of the family Hemiasterellidae is discussed
- âŚ