79 research outputs found

    CCR2-dependent monocyte-derived macrophages resolve inflammation and restore gut motility in postoperative ileus

    Get PDF
    Postoperative ileus (POI) is assumed to result from myeloid cells infiltrating the intestinal muscularis externa (ME) in patients undergoing abdominal surgery. In the current study, we investigated the role of infiltrating monocytes in a murine model of intestinal manipulation (IM)-induced POI in order to clarify whether monocytes mediate tissue damage and intestinal dysfunction or they are rather involved in the recovery of gastrointestinal (GI) motility.status: publishe

    Pharmacologic activation of LXR alters the expression profile of tumor-associated macrophages and the abundance of regulatory T cells in the tumor microenvironment

    Get PDF
    Liver X receptors (LXR) are transcription factors from the nuclear receptor family that are activated by oxysterols and synthetic high-affinity agonists. In this study, we assessed the antitumor effects of synthetic LXR agonist TO901317 in a murine model of syngeneic Lewis Lung carcinoma. Treatment with TO901317 inhibited tumor growth in wild-type, but not in LXR-deficient mice, indicating that the antitumor effects of the agonist depends on functional LXR activity in host cells. Pharmacologic activation of the LXR pathway reduced the intratumoral abundance of regulatory T cells (Treg) and the expression of the Treg-attracting chemokine Ccl17 by MHCIIhigh tumor-associated macrophages (TAM). Moreover, gene expression profiling indicated a broad negative impact of the LXR agonist on other mechanisms used by TAM for the maintenance of an immunosuppressive environment. In studies exploring the macrophage response to GM-CSF or IL4, activated LXR repressed IRF4 expression, resulting in subsequent downregulation of IRF4-dependent genes including Ccl17. Taken together, this work reveals the combined actions of the LXR pathway in the control of TAM responses that contribute to the antitumoral effects of pharmacologic LXR activation. Moreover, these data provide new insights for the development of novel therapeutic options for the treatment of cancer.This work was supported by the following grants: Spanish Ministry of Economy and Competitivity (MINECO) grants SAF2017-89510-R and SAF2014-57856-P [to A.F. Valledor and C. Caelles; SAF2014-56819-R to A. Castrillo; SAF2017-90604-REDT and SAF2015-71878-REDT to the NuRCaMeIn network (to A.F. Valledor, C. Caelles, and A. Castrillo); Spanish Ministry of Science and Innovation (MICINN) grants SAF2011-23402 and SAF2010-14989 (to A.F. Valledor); Fundacio La Marato de TV3 grant 080930 (to A.F. Valledor); grants DFG HU 1824/5-1, 1824/7-1, and 1824/9-1 (to M. Huber); the European Cooperation in Science and Technology (COST) Action BM1404 Mye-EUNITER (http://www.mye-euniter. eu/; to A.F. Valledor, J.A. Van Ginderachter); and Instituto de Salud Carlos III and FEDER “Una manera de hacer Europa” grant FIS 16/00139 (to J.C. Escola-Gil). CIBERDEM is an Instituto de Salud Carlos III project. J.M. C received a fellowship from the University of Barcelona (APIF) and J. Font-Díaz received a fellowship from the Spanish Ministry of Science, Innovation and Universities (FPI, PRE2018-085579)

    Size-advantage of monovalent nanobodies against the macrophage mannose receptor for deep tumor penetration and tumor-associated macrophage targeting

    Get PDF
    Rationale: Nanobodies (Nbs) have emerged as an elegant alternative to the use of conventional monoclonal antibodies in cancer therapy, but a detailed microscopic insight into the in vivo pharmacokinetics of different Nb formats in tumor-bearers is lacking. This is especially relevant for the recognition and targeting of pro-tumoral tumor-associated macrophages (TAMs), which may be located in less penetrable tumor regions.Methods: We employed anti-Macrophage Mannose Receptor (MMR) Nbs, in a monovalent (m) or bivalent (biv) format, to assess in vivo TAM targeting. Intravital and confocal microscopy were used to analyse the blood clearance rate and targeting kinetics of anti-MMR Nbs in tumor tissue, healthy muscle tissue and liver. Fluorescence Molecular Tomography was applied to confirm anti-MMR Nb accumulation in the primary tumor and in metastatic lesions.Results: Intravital microscopy demonstrated significant differences in the blood clearance rate and macrophage targeting kinetics of (m) and (biv)anti-MMR Nbs, both in tumoral and extra-tumoral tissue. Importantly, (m)anti-MMR Nbs are superior in reaching tissue macrophages, an advantage that is especially prominent in tumor tissue. The administration of a molar excess of unlabelled (biv)anti-MMR Nbs increased the (m)anti-MMR Nb bioavailability and impacted on its macrophage targeting kinetics, preventing their accumulation in extra-tumoral tissue (especially in the liver) but only partially influencing their interaction with TAMs. Finally, anti-MMR Nb administration not only allowed the visualization of TAMs in primary tumors, but also at a distant metastatic site.Conclusions: These data describe, for the first time, a microscopic analysis of (m) and (biv)anti-MMR Nb pharmacokinetics in tumor and healthy tissues. The concepts proposed in this study provide important knowledge for the future use of Nbs as diagnostic and therapeutic agents, especially for the targeting of tumor-infiltrating immune cells.Radiolog

    Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines

    Get PDF
    Description of macrophage activation is currently contentious and confusing. Like the biblical Tower of Babel, macrophage activation encompasses a panoply of descriptors used in different ways. The lack of consensus on how to define macrophage activation in experiments in vitro and in vivo impedes progress in multiple ways, including the fact that many researchers still consider there to be only two types of activated macrophages, often termed M1 and M2. Here, we describe a set of standards encompassing three principles—the source of macrophages, definition of the activators, and a consensus collection of markers to describe macrophage activation—with the goal of unifying experimental standards for diverse experimental scenarios. Collectively, we propose a common framework for macrophage-activation nomenclature

    Modulation of macrophage cytokine profiles during solid tumor progression: susceptibility to Candida albicans infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to attain a better understanding of the interactions between opportunist fungi and their hosts, we investigated the cytokine profile associated with the inflammatory response to <it>Candida albicans </it>infection in mice with solid Ehrlich tumors of different degrees.</p> <p>Methods</p> <p>Groups of eight animals were inoculated intraperitoneally with 5 × 10<sup>6 </sup><it>C. albicans </it>7, 14 or 21 days after tumor implantation. After 24 or 72 hours, the animals were euthanized and intraperitoneal lavage fluid was collected. Peritoneal macrophages were cultivated and the levels of IFN-γ, TNF-α, IL-12, IL-10 and IL-4 released into the supernatants were measured by ELISA. Kidney, liver and spleen samples were evaluated for fungal dissemination. Tumor-free animals and animals that had only been subjected to <it>C. albicans </it>infection were used as control groups.</p> <p>Results</p> <p>Our results demonstrated that the mice produced more IFN-γ and TNF-α and less IL-10, and also exhibited fungal clearance, at the beginning of tumor evolution. With the tumor progression, this picture changed: IL-10 production increased and IFN-γ and TNF-α release decreased; furthermore, there was extensive fungal dissemination.</p> <p>Conclusion</p> <p>Our results indicate that solid tumors can affect the production of macrophage cytokines and, in consequence, affect host resistance to opportunistic infections.</p

    Efficient Capture of Infected Neutrophils by Dendritic Cells in the Skin Inhibits the Early Anti-Leishmania Response

    Get PDF
    Neutrophils and dendritic cells (DCs) converge at localized sites of acute inflammation in the skin following pathogen deposition by the bites of arthropod vectors or by needle injection. Prior studies in mice have shown that neutrophils are the predominant recruited and infected cells during the earliest stage of Leishmania major infection in the skin, and that neutrophil depletion promotes host resistance to sand fly transmitted infection. How the massive influx of neutrophils aimed at wound repair and sterilization might modulate the function of DCs in the skin has not been previously addressed. The infected neutrophils recovered from the skin expressed elevated apoptotic markers compared to uninfected neutrophils, and were preferentially captured by dermal DCs when injected back into the mouse ear dermis. Following challenge with L. major directly, the majority of the infected DCs recovered from the skin at 24 hr stained positive for neutrophil markers, indicating that they acquired their parasites via uptake of infected neutrophils. When infected, dermal DCs were recovered from neutrophil depleted mice, their expression of activation markers was markedly enhanced, as was their capacity to present Leishmania antigens ex vivo. Neutrophil depletion also enhanced the priming of L. major specific CD4+ T cells in vivo. The findings suggest that following their rapid uptake by neutrophils in the skin, L. major exploits the immunosuppressive effects associated with the apoptotic cell clearance function of DCs to inhibit the development of acquired resistance until the acute neutrophilic response is resolved

    IL-10R Blockade during Chronic Schistosomiasis Mansoni Results in the Loss of B Cells from the Liver and the Development of Severe Pulmonary Disease

    Get PDF
    In schistosomiasis patients, parasite eggs trapped in hepatic sinusoids become foci for CD4+ T cell-orchestrated granulomatous cellular infiltrates. Since the immune response is unable to clear the infection, the liver is subjected to ongoing cycles of focal inflammation and healing that lead to vascular obstruction and tissue fibrosis. This is mitigated by regulatory mechanisms that develop over time and which minimize the inflammatory response to newly deposited eggs. Exploring changes in the hepatic inflammatory infiltrate over time in infected mice, we found an accumulation of schistosome egg antigen-specific IgG1-secreting plasma cells during chronic infection. This population was significantly diminished by blockade of the receptor for IL-10, a cytokine implicated in plasma cell development. Strikingly, IL-10R blockade precipitated the development of portal hypertension and the accumulation of parasite eggs in the lungs and heart. This did not reflect more aggressive Th2 cell responsiveness, increased hepatic fibrosis, or the emergence of Th1 or Th17 responses. Rather, a role for antibody in the prevention of severe disease was suggested by the finding that pulmonary involvement was also apparent in mice unable to secrete class switched antibody. A major effect of anti-IL-10R treatment was the loss of a myeloid population that stained positively for surface IgG1, and which exhibited characteristics of regulatory/anti-inflammatory macrophages. This finding suggests that antibody may promote protective effects within the liver through local interactions with macrophages. In summary, our data describe a role for IL-10-dependent B cell responses in the regulation of tissue damage during a chronic helminth infection
    corecore