513 research outputs found

    Regionalism

    Get PDF
    "In this paper, we review the debate on "new regionalism," focusing on the tools used to evaluate regional trade agreements (RTAs). We find that much analysis uses tools from old trade theory in the Viner-Meade tradition, focusing on trade creation, trade diversion, and terms-of-trade effects. These tools are adequate for the analysis of the effects of removing commodity trade barriers ("shallow" integration), but the comfortable Viner-Meade framework misses many of the impacts associated with new regionalism, which typically involves "deep integration," often between developing and developed countries. A framework for analyzing new regionalism should include dynamic changes such as trade-productivity links and endogenous growth theory, international factor mobility, the role of imperfect competition, rent seeking behavior, and political-economy considerations such as potential conflicts between regionalism and multilateralism. Agriculture poses problems for new regionalism because of high tariffs, the use of domestic subsidies and entrenched special interest groups, but the role of trade liberalization on its productivity is often overlooked. For developing countries, a crucial issue is whether and how regionalism can be part of a successful development strategy. While "new trade theory" is concerned with a number of the issues relevant to new regionalism, and is providing new tools, the work is eclectic and is far from providing a unified framework for empirical analysis of new regionalism. Both theoretical and empirical research is needed to improve the reach and scope of new trade theory applied to issues of new regionalism." Authors' AbstractRegionalism. ,Regional trade agreements ,Terms of trade. ,

    Small countries and the case for regionalism vs. multilateralism

    Get PDF
    Much of the debate over whether or not developing countries gain from regional trade agreements (RTA's) has focused on two characteristics that are common to developing countries: their relatively high tariffs and their high trade dependencies on one or a few developed trade partners. In this paper, we address a third common characteristic: their use of distorting domestic policies that are closely linked to trade restrictions. We argue that participation in an RTA can create pressures for domestic policy reforms. We analyze the case of a small country, Mexico, forming an RTA with two larger countries, the U.S. and Canada, in the North American Free Trade Agreement (NAFTA). Mexico exhibits all three characteristics of a developing country: relatively high tariffs, a high trade dependency on the U.S., and an extensive and pervasive system of farm support that was linked to the restriction of trade. For the analysis, we use a 26- sector, multi-country, computable general equilibrium (CGE) model in which the three single- country models are linked through trade flows, and farm programs are modeled in detail. We find that there are welfare gains from trade liberalization in all three countries only when domestic reforms are in place. Mexico gains from NAFTA only when it also removes domestic distortions in agriculture. Then, agriculture can generate allocative efficiency gains that are large enough to offset the terms of trade losses which arise because Mexico has higher initial tariffs than other RTA members.Trade policy Econometric models. ,Mexico ,Equilibrium (Economics) Econometric models. ,Free trade North America. ,TMD ,

    Deep reconditioning of batteries during DSCS 3 flight operations

    Get PDF
    Deep reconditioning of batteries is defined as discharge below the 1.0 volt/cell level to a value of about 1.0 volt/battery. This type of reconditioning was investigated for use on the Defense Satellite Communications System (DSCS) spacecraft, and has been used during the first year of orbital operation. Prior to launch of the spacecraft, the deep reconditioning was used during the battery life test, which has now complete fourteen eclipse periods. Reconditioning was performed prior to each eclipse period of the life test, and is scheduled to be used prior to each eclipse period in orbit. The battery data for discharge and recharge is presented for one of the life test reconditioning cycles, and for each of the three batteries during the reconditioning cycles between eclipse period no.1 and eclipse period no.2 in Earth orbit

    The adaptive capacity of maize-based conservation agriculture systems to climate stress in tropical and subtropical environments: A meta-regression of yields

    Get PDF
    Conservation agriculture is widely promoted across sub-Saharan Africa as a sustainable farming practice that enhances adaptive capacity to climate change. The interactions between climate stress, management, and soil are critical to understanding the adaptive capacity of conservation agriculture. Yet conservation agriculture syntheses to date have largely neglected climate, especially the effects of extreme heat. For the sub-tropics and tropics, we use meta-regression, in combination with global soil and climate datasets, to test four hypotheses: (1) that relative yield performance of conservation agriculture improves with increasing drought and temperature stress; (2) that the effects of moisture and temperature stress exposure interact; (3) that the effects of moisture and temperature stress are modified by soil texture; and (4) that crop diversification, fertilizer application rate, or the time since no-till implementation will enhance conservation agriculture performance under climate stress. Our results support the hypothesis that the relative maize yield performance of conservation agriculture improves with increasing drought severity or exposure to high temperatures. Further, there is an interaction of moisture and heat stress on conservation agriculture performance and their combined effect is both non-additive and modified by soil clay content, supporting our second and third hypotheses. Finally, we found only limited support for our fourth hypothesis as (1) increasing nitrogen application rates did not improve the relative performance of conservation agriculture under high heat stress; (2) crop diversification did not notably improve conservation agriculture performance, but did increase its stability with heat stress; and (3) a statistically robust effect of the time since no-till implementation was not evident. Our meta-regression supports the narrative that conservation agriculture enhances the adaptive capacity of maize production in sub-Saharan Africa under drought and/or heat stress. However, in very wet seasons and on clay-rich soils, conservation agriculture yields less compared to conventional practices

    Occurrence and diversity of arbuscular mycorrhizal fungi colonising off‐season and in‐season weeds and their relationship with maize yield under conservation agriculture

    Get PDF
    Weeds are responsible for major crop losses worldwide but can provide beneficial agroecosystem services. This study aimed to elucidate how arbuscular mycorrhizal fungi (AMF) in weeds respond to host identity and conservation agricultural practices. The study was carried out at two locations in Southern Africa during off-season and in-season maize cultivation. Off-season AMF root colonisation, diversity indices and community composition significantly differed among weed species at both locations. Glomus sp. VTX00280 explains most of the AMF community differences. In-season, implementation of conventional tillage with mulching alone (CT + M) or together with crop rotation (CT + M + R) resulted in a 20% increase in AMF colonisation of the constantly occurring weed species, Bidens pilosa (BIDPI) and Richardia scabra (RCHSC), com- pared with conventional tillage plus rotations (CT + R). The diversity of AMF was highest under no-tillage plus mulching (NT + M). Off-season and in-season AMF structures of both BIDPI and RCHSC were not related, but 39% of the taxa were shared. Structural equation modelling showed a significant effect of the cropping system on weed AMF diversity parameters and weed and maize root colonisation, but no significant influence of weed root AMF traits and maize colonisation was detected on maize yield. This may be explained by the improvement in weed competitive ability, which may have offset the AMF-mediated benefits on yield. Our findings highlight that implementing M and CR to CT and NT positively affected weed AMF colonisation and diversity. The similarity between the off-season and in-season AMF composition of weeds supports the fact that weeds functionally host AMF during the non-crop period

    Phenotyping conservation agriculture management effects on ground and aerial remote sensing assessments of maize hybrids performance in Zimbabwe

    Get PDF
    n the coming decades, Sub-Saharan Africa (SSA) faces challenges to sustainably increasefood production while keeping pace with continued population growth. Conservation agriculture(CA) has been proposed to enhance soil health and productivity to respond to this situation.Maize is the main staple food in SSA. To increase maize yields, the selection of suitable genotypes andmanagement practices for CA conditions has been explored using remote sensing tools. They may playa fundamental role towards overcoming the traditional limitations of data collection and processing inlarge scale phenotyping studies. We present the result of a study in which Red-Green-Blue (RGB) andmultispectral indexes were evaluated for assessing maize performance under conventional ploughing(CP) and CA practices. Eight hybrids under different planting densities and tillage practices weretested. The measurements were conducted on seedlings at ground level (0.8 m) and from an unmannedaerial vehicle (UAV) platform (30 m), causing a platform proximity effect on the images resolution thatdid not have any negative impact on the performance of the indexes. Most of the calculated indexes(Green Area (GA) and Normalized Difference Vegetation Index (NDVI)) were significantly affectedby tillage conditions increasing their values from CP to CA. Indexes derived from the RGB-imagesrelated to canopy greenness performed better at assessing yield differences, potentially due to thegreater resolution of the RGB compared with the multispectral data, although this performance wasmore precise for CP than CA.The correlations of the multispectral indexes with yield were improvedby applying a soil-mask derived from a NDVI threshold with the aim of corresponding pixels withvegetation. The results of this study highlight the applicability of remote sensing approaches basedon RGB images to the assessment of crop performance and hybrid choice

    , Nuclear quadrupole moment of 139La from relativistic electronic structure calculations of the electric field gradients in LaF, LaCl, LaBr and LaI

    Get PDF
    Relativistic coupled cluster theory is used to determine accurate electric field gradients in order to provide a theoretical value for the nuclear quadrupole moment of La139. Here we used the diatomic lanthanum monohalides LaF, LaCl, LaBr, and LaI as accurate nuclear quadrupole coupling constants are available from rotational spectroscopy by Rubinoff [J. Mol. Spectrosc. 218, 169 (2003)]. The resulting nuclear quadrupole moment for La139 (0.200±0.006 barn) is in excellent agreement with earlier work using atomic hyperfine spectroscopy [0.20 (1) barn]. © 2007 American Institute of Physics

    Methane adsorption on graphene from first principles including dispersion interaction

    Get PDF
    The methane-graphene interaction is studied using density functional theory complemented with a semiempirical dispersion correction scheme (DFT-D), an ab initio van der Waals density functional (vdW-DF) ansatz as well as using Møller Plesset perturbation theory (MP2). The adsorption energy of 0.17 eV and the molecular distance of 3.28 Å obtained from the MP2 calculations are close to the experimental data, while the vdW-DF scheme results either in a realistic adsorption energy or a realistic adsorption geometry, depending on the underlying exchange-correlation functional. The present implementation of DFT-D overbinds about as much as bare DFT calculations underbind, but yields a meaningful adsorption height

    Leaf versus whole-canopy remote sensing methodologies for crop monitoring under conservation agriculture: a case of study with maize in Zimbabwe

    Get PDF
    Enhancing nitrogen fertilization efficiency for improving yield is a major challenge for smallholder farming systems. Rapid and cost-effective methodologies with the capability to assess the effects of fertilization are required to facilitate smallholder farm management. This study compares maize leaf and canopy-based approaches for assessing N fertilization performance under different tillage, residue coverage and top-dressing conditions in Zimbabwe. Among the measurements made on individual leaves, chlorophyll readings were the best indicators for both N content in leaves (R < 0.700) and grain yield (GY) (R < 0.800). Canopy indices reported even higher correlation coefficients when assessing GY, especially those based on the measurements of the vegetation density as the green area indices (R < 0.850). Canopy measurements from both ground and aerial platforms performed very similar, but indices assessed from the UAV performed best in capturing the most relevant information from the whole plot and correlations with GY and leaf N content were slightly higher. Leaf-based measurements demonstrated utility in monitoring N leaf content, though canopy measurements outperformed the leaf readings in assessing GY parameters, while providing the additional value derived from the affordability and easiness of using a pheno-pole system or the high-throughput capacities of the UAVs
    corecore