1,314 research outputs found

    Inorganic synthesis-structure maps in zeolites with machine learning and crystallographic distances

    Get PDF
    Zeolites are inorganic materials known for their diversity of applications, synthesis conditions, and resulting polymorphs. Although their synthesis is controlled both by inorganic and organic synthesis conditions, computational studies of zeolite synthesis have focused mostly on organic template design. In this work, we use a strong distance metric between crystal structures and machine learning (ML) to create inorganic synthesis maps in zeolites. Starting with 253 known zeolites, we show how the continuous distances between frameworks reproduce inorganic synthesis conditions from the literature without using labels such as building units. An unsupervised learning analysis shows that neighboring zeolites according to our metric often share similar inorganic synthesis conditions, even in template-based routes. In combination with ML classifiers, we find synthesis-structure relationships for 14 common inorganic conditions in zeolites, namely Al, B, Be, Ca, Co, F, Ga, Ge, K, Mg, Na, P, Si, and Zn. By explaining the model predictions, we demonstrate how (dis)similarities towards known structures can be used as features for the synthesis space. Finally, we show how these methods can be used to predict inorganic synthesis conditions for unrealized frameworks in hypothetical databases and interpret the outcomes by extracting local structural patterns from zeolites. In combination with template design, this work can accelerate the exploration of the space of synthesis conditions for zeolites

    Crystal packing arrangement, chain conformation, and physicochemical properties of gemfibrozil amine salts

    Get PDF
    Salt formation is used to optimize pharmaceutical properties for carboxylic acid drugs but selection can often be empirical. An extended series of salts of the anti-hyperlipidaemia carboxylic acid drug gemfibrozil was prepared using related series of amine counterions to gain a molecular insight into the impact of crystal packing arrangements on their physicochemical properties. With only a few exceptions, the salts had similar crystal packing motifs. Although there was no discernible relationship between melting point of the salt form and the aqueous solubility of the salt across the whole dataset, there were trends within structurally-related series of salts relating increasing melting enthalpy with increasing molecular weight of the counter ion

    Child mental health in Jordanian orphanages: effect of placement change on behavior and caregiving

    Get PDF
    Background: To assess the mental health and behavioral problems of children in institutional placements in Jordan to inform understanding of current needs, and to explore the effects of placement change on functioning and staff perceptions of goodness-of-fit. Methods: An assessment was completed of 134 children between 1.5? 12 years-of-age residing in Jordanian orphanages. The Child Behavior Checklist was used to assess prevalence rates of problems across externalizing and internalizing behavior and DSM-IV oriented subscales. Also included was caregiver perceived goodness-of-fit with each child, caregiving behavior, and two placement change-clock variables; an adjustment clock measuring time since last move, and an anticipation clock measuring time to next move. Results: 28% were in the clinical range for the internalizing domain on the CBCL, and 22% for the externalizing domain. The children also exhibited high levels of clinical range social problems, affective disorder, pervasive developmental disorder, and conduct problems. Internalizing problems were found to decrease with time in placement as children adjust to a prior move, whereas externalizing problems increased as the time to their next age-triggered move drew closer, highlighting the anticipatory effects of change. Both behavioral problems and the change clocks were predictive of staff perceptions of goodness-of-fit with the children under their care. Conclusions: These findings add to the evidence demonstrating the negative effects of orphanage rearing, and highlight the importance of the association between behavioral problems and child-caregiver relationship pathways including the timing of placement disruptions and staff perceptions of goodness-of-fit

    Moral reasoning and homosexuality: the acceptability of arguments about lesbian and gay issues

    Get PDF
    In the political arena, lesbian and gay issues have typically been contested on grounds of human rights, but with variable success. Using a moral developmental framework, the purpose of this study was to explore preferences for different types of moral arguments when thinking about moral dilemmas around lesbian and gay issues. The analysis presented here comprised data collected from 545 students at UK universities, who completed a questionnaire, part of which comprised a moral dilemma task. Findings of the study showed that respondents do not apply moral reasoning consistently, and do not (clearly) favour human rights reasoning when thinking about lesbian and gay issues. Respondents tended to favour reasoning supporting existing social structures and frameworks, therefore this study highlights the importance of structural change in effecting widespread attitude change in relation to lesbian and gay rights issues. The implications of the findings for moral education are also discussed.</p

    All-Sky Search for Long-Duration Gravitational Wave Transients in the First Advanced LIGO Observing Run

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in the data of the LIGO Hanford and LIGO Livingston second generation detectors between and , with a total observational time of . The search targets gravitational wave transients of 10–500 s duration in a frequency band of 24–2048 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. No significant events were observed. As a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. We also show that the search is sensitive to sources in the Galaxy emitting at least  ~10−8 in gravitational waves

    Search for Gravitational Waves Associated with Gamma-Ray Bursts During the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B

    Get PDF
    We present the results of the search for gravitational waves (GWs) associated with γ-ray bursts detected during the first observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). We find no evidence of a GW signal for any of the 41 γ-ray bursts for which LIGO data are available with sufficient duration. For all γ-ray bursts, we place lower bounds on the distance to the source using the optimistic assumption that GWs with an energy of 102Mc2{10}^{-2}{M}_{\odot }{c}^{2} were emitted within the 1616500500 Hz band, and we find a median 90% confidence limit of 71 Mpc at 150 Hz. For the subset of 19 short/hard γ-ray bursts, we place lower bounds on distance with a median 90% confidence limit of 90 Mpc for binary neutron star (BNS) coalescences, and 150 and 139 Mpc for neutron star–black hole coalescences with spins aligned to the orbital angular momentum and in a generic configuration, respectively. These are the highest distance limits ever achieved by GW searches. We also discuss in detail the results of the search for GWs associated with GRB 150906B, an event that was localized by the InterPlanetary Network near the local galaxy NGC 3313, which is at a luminosity distance of 5454 Mpc (z = 0.0124). Assuming the γ-ray emission is beamed with a jet half-opening angle 30\leqslant 30^\circ , we exclude a BNS and a neutron star–black hole in NGC 3313 as the progenitor of this event with confidence \u3e99%. Further, we exclude such progenitors up to a distance of 102 Mpc and 170 Mpc, respectively

    A priori control of zeolite phase competition and intergrowth with high-throughput simulations

    Get PDF
    Zeolites are versatile catalysts and molecular sieves with large topological diversity, but managing phase competition in zeolite synthesis is an empirical, labor-intensive task. In this work, we controlled phase selectivity in templated zeolite synthesis from first principles by combining high-throughput atomistic simulations, literature mining, human-computer interaction, synthesis, and characterization. Proposed binding metrics distilled from more than 586,000 zeolite-molecule simulations reproduced the extracted literature and rationalized framework competition in the design of organic structure-directing agents. Energetic, geometric, and electrostatic descriptors of template molecules were found to regulate synthetic accessibility windows and aluminum distributions in pure-phase zeolites. Furthermore, these parameters allowed us to realize an intergrowth zeolite through a single bi-selective template. The computation-first approach enables control of both zeolite synthesis and structure composition using a priori theoretical descriptors.D.S.-K. and R.G.-B. acknowledge the Energy Initiative (MITEI) and MIT International Science and Technology Initiatives (MISTI) Seed Funds. D.S.-K. was also funded by the MIT Energy Fellowship. C.P., E.B.-J., M.M., and A.C. acknowledge financial support by the Spanish government through the “Severo Ochoa” program (SEV-2016-0683, MINECO) and grant RTI2018-101033-B-I00 (MCIU/AEI/FEDER, UE). E.B.-J. acknowledges the Spanish government for an FPI scholarship (PRE2019-088360). Z.J., E.O., S.K., and Y.R.-L. acknowledge partial funding from Designing Materials to Revolutionize and Engineer our Future (DMREF) from the National Science Foundation (NSF); awards 1922311, 1922372, and 1922090; and the Office of Naval Research (ONR) under contract N00014-20-1-2280. S.K. was additionally funded by the Kwanjeong Educational Fellowship. Z.J. was also supported by the Department of Defense (DoD) through the National Defense Science Engineering Graduate (NDSEG) fellowship program. T.W. acknowledges financial support by the Swedish Research Council (grant no. 2019-05465). Computer calculations were executed at the Massachusetts Green High-Performance Computing Center with support from MIT Research Computing and at the Extreme Science and Engineering Discovery Environment (XSEDE) (53) Expanse through allocation TG-DMR200068
    corecore